• Title/Summary/Keyword: DVI Line-SBLOCA accident

Search Result 2, Processing Time 0.015 seconds

Study on the influence of flow blockage in severe accident scenario of CAP1400 reactor

  • Pengcheng Gao;Bin Zhang ;Jishen Li ;Fan Miao ;Shaowei Tang ;Sheng Cao;Hao Yang ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.999-1008
    • /
    • 2023
  • Deformed fuel rods can cause a partial blockage of the flow area in a subchannel. Such flow blockage will influence the core coolant flow and further the core heat transfer during the reflooding phase and subsequent severe accidents. Nevertheless, most of the system analysis codes simulate the accident process based on the assumed flow blockage ratio, resulting in inconsistencies between simulated results and actual conditions. This paper aims to study the influence of flow blockage in severe accident scenario of the CAP1400 reactor. First, the flow blockage model of ISAA code is improved based on the FRTMB module. Then, the ISAA-FRTMB coupling system is adopted to model and calculate the QUENCH-LOCA-0 experiment. The correctness and validity of the flow blockage model are verified by comparing the peak cladding temperature. Finally, the DVI Line-SBLOCA accident is induced to analyze the influence of flow blockage on subsequent CAP1400 reactor core heat transfer and core degradation. From the results of the DVI Line-SBLOCA accident analysis, it can be concluded that the blockage ratio is in the range of 40%-60%, and the position of severe blockage is the same as that of cladding rupture. The blockage reduces the circulation area of the core coolant, which in turn impacts the heat exchange between the core and the coolant, leading to the early failure and collapse of some core assemblies and accelerating the core degradation process.

FIRST ATLAS DOMESTIC STANDARD PROBLEM (DSP-01) FOR THE CODE ASSESSMENT

  • Kim, Yeon-Sik;Choi, Ki-Yong;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Baek, Won-Pil;Kim, Kyung-Doo;Sim, Suk-K.;Lee, Eo-Hwak;Kim, Se-Yun;Kim, Joo-Sung;Choi, Tong-Soo;Kim, Cheol-Woo;Lee, Suk-Ho;Lee, Sang-Il;Lee, Keo-Hyoung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.25-44
    • /
    • 2011
  • KAERI has been operating an integral effect test facility, ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation), for accident simulations of advanced PWRs. Regarding integral effect tests, a database for major design basis accidents has been accumulated and a Domestic Standard Problem (DSP) exercise using the ATLAS has been proposed and successfully performed. The ATLAS DSP aims at the effective utilization of an integral effect database obtained from the ATLAS, the establishment of a cooperative framework in the domestic nuclear industry, better understanding of thermal hydraulic phenomena, and an investigation of the potential limitations of the existing best-estimate safety analysis codes. For the first ATLAS DSP exercise (DSP-01), integral effect test data for a 100% DVI line break accident of the APR1400 was selected by considering its technical importance and by incorporating comments from participants. Twelve domestic organizations joined in this DSP-01 exercise. Finally, ten of these organizations submitted their calculation results. This ATLAS DSP-01 exercise progressed as an open calculation; the integral effect test data was delivered to the participants prior to the code calculations. The MARS-KS was favored by most participants but the RELAP5/MOD3.3 code was also used by a few participants. This paper presents all the information of the DSP-01 exercise as well as the comparison results between the calculations and the test data. Lessons learned from the first DSP-01 are presented and recommendations for code users as well as for developers are suggested.