• Title/Summary/Keyword: DTMS

Search Result 10, Processing Time 0.032 seconds

A Matchmaking System Adjusting the Mate-Selection Criteria based on a User's Behaviors using the Decision Tree (고객의 암묵적 이상형을 반영하여 배우자 선택기준을 동적으로 조정하는 온라인 매칭 시스템: 의사결정나무의 활용을 중심으로)

  • Park, Yoon-Joo
    • Information Systems Review
    • /
    • v.14 no.3
    • /
    • pp.115-129
    • /
    • 2012
  • A matchmaking system is a type of recommender systems that provides a set of dating partners suitable for the user by online. Many matchmaking systems, which are widely used these days, require users to specify their preferences with regards to ideal dating partners based on criteria such as age, job and salary. However, some users are not aware of their exact preferences, or are reluctant to reveal this information even if they do know. Also, users' selection standards are not fixed and can change according to circumstances. This paper suggests a new matchmaking system called Decision Tree based Matchmaking System (DTMS) that automatically adjusts the stated standards of a user by analyzing the characteristics of the people the user chose to contact. AMMS provides recommendations for new users on the basis of their explicit preferences. However, as a user's behavioral records are accumulated, it begins to analyze their hidden implicit preferences using a decision tree technique. Subsequently, DTMS reflects these implicit preferences in proportion to their predictive accuracy. The DTMS is regularly updated when a user's data size increases by a set amount. This paper suggests an architecture for the DTMS and presents the results of the implementation of a prototype.

  • PDF

Generation of Progressively Sampled DTM using Model Key Points Extracted from Contours in Digital Vector Maps (수치지도 등고선의 Model Key Point 추출과 Progressive Sampling에 의한 수치지형모델 생성)

  • Lee, Sun-Geun;Yom, Jae-Hong;Lim, Sae-Bom;Kim, Kye-Lim;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.645-651
    • /
    • 2007
  • In general, contours in digital vector maps, which represent terrain characteristics and shape, are created by 3D digitizing the same height points using aerial photographs on the analytical or digital plotters with stereoscopic viewing. Hence, it requires lots of task, and subjective decision and experience of the operators. DTMs are generated indirectly by using contours since the national digital maps do not include digital terrain model (DTM) data. In this study, model key points which depict the important information about terrain characteristics were extracted from the contours. Further, determination of the efficient and flexible grid sizes were proposed to generate optimal DTM in terms of both quantitative and qualitative aspects. For this purpose, a progressive sampling technique was implemented, i.e., the smaller grid sizes are assigned for the mountainous areas where have large relief while the larger grid sizes are assigned for the relatively flat areas. In consequence, DTMs with multi-grid for difference areas could be generated instead of DTMs with a fixed grid size. The multi-grid DTMs reduce computations for data processing and provide fast display.

A Study on a Framework for Digital Twin Management System applicable to Smart Factory (스마트 팩토리에 적용 가능한 디지털 트윈 관리시스템 프레임워크에 관한 연구)

  • Park, Dongjin;Choi, Myungsoo;Yang, Dongsik
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.9
    • /
    • pp.1-7
    • /
    • 2020
  • In order to implement a smart factory for manufacturing innovation, more digital twins will be developed and applied gradually. In particular, simulation and optimization of digital twins makes it possible to support critical decision-making like a predictive maintenance of the equipment for manufacturing. In terms of a user perspective, this study suggests the conceptual framework of Digital Twin Management System (DTMS) for supporting the analytical and managerial activities for Digital Twins. We integrate the methods and structure of the area like Manufacturing Engineering, Decision Support Systems, and Optimization for developing the DTMS. The framework suggested in this study shows a typical DSS which consists of dialog management system, model management system and data management system. It also includes Analytical Digital Twins and simulations & optimization module. The framework is being applied in one of the most competitive and complex industrial sector. Also this study is meaningful to suggest a new direction of research.

DTM GENERATION OF RADARSAT AND SPOT SATELLITE IMAGERY USING GROUND CONTROL POINTS EXTRACTED FROM SAR IMAGE

  • PARK DOO-YOUL;KIM JIN-KWANG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.667-670
    • /
    • 2005
  • Ground control points(GCPs) can be extracted from SAR data given precise orbit for DTM generation using optic images and other SAR data. In this study, we extract GCPs from ERS SAR data and SRTM DEM. Although it is very difficult to identify GCPs in ERS SAR image, the geometry of optic image and other SAR data are able to be corrected and more precise DTM can be constructed from stereo optic images. Twenty GCPs were obtained from the ERS SAR data with precise Delft orbit information. After the correction was applied, the mean values of planimetric distance errors of the GCPs were 3.7m, 12.1 and -0.8m with standard deviations of 19.9m, 18.1, and 7.8m in geocentric X, Y, and Z coordinates, respectively. The geometries of SPOT stereo pair were corrected by 13 GCPs, and r.m.s. errors were 405m, 705m and 8.6m in northing, easting and height direction, respectively. And the geometries of RADARS AT stereo pair were corrected by 12 GCPs, and r.m.s. errors were 804m, 7.9m and 6.9m in northing, easting and height direction, respectively. DTMs, through a method of area based matching with pyramid images, were generated by SPOT stereo images and RADARS AT stereo images. Comparison between points of the obtained DTMs and points estimated from a national 1 :5,000 digital map was performed. For DTM by SPOT stereo images, the mean values of distance errors in northing, easting and height direction were respectively -7.6m, 9.6m and -3.1m with standard deviations of 9.1m, 12.0m and 9.1m. For DTM by RADARSAT stereo images, the mean values of distance errors in northing, easting and height direction were respectively -7.6m, 9.6m and -3.1m with standard deviations of 9.1m, 12.0m and 9.1m. These results met the accuracy of DTED level 2

  • PDF

A Study on the Application of Artificial Intelligence in Elementary Science Education (초등과학교육에서 인공지능의 적용방안 연구)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.1
    • /
    • pp.117-132
    • /
    • 2020
  • The purpose of this study is to investigate elementary school teachers' awareness of Artificial Intelligence (AI) and find out how to apply it in elementary science education. The survey was conducted online and involved 95 teachers working in the metropolitan area. The results of this study are as follows. First, teachers need to learn about the general characteristics of AI and how to apply it to education. Second, science classes had the highest preference for AI among elementary school subjects. Third, the preference for AI application by elementary science field was 68.4% for earth and space, 54.7% for exercise and energy, 32.6% for matter, 27.4% for life. Fourth, AI-based Science Education (AISE) teaching- learning strategies were developed based on AI characteristics and the changing perspective of elementary science education, AISE's teaching-learning strategies are five: 'automation', 'individualization', 'diversification', 'cooperation' and 'creativity' and teachers can use them in teaching design, class practice and evaluation stages. Finally, the creative problem-solving Doing Thinking Making Sharing (DTMS) model was devised to implement the creativity strategy in AISE. This model consists of four-steps teaching courses: Doing, Thinking, Making and Sharing based on the empirical learning theory. In the future, follow-up research is needed to verify the effectiveness of this model by applying it to elementary science education.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

Comparative Analysis of DTM Generation Method for Stream Area Using UAV-Based LiDAR and SfM (여름철 UAV 기반 LiDAR, SfM을 이용한 하천 DTM 생성 기법 비교 분석)

  • Gou, Jaejun;Lee, Hyeokjin;Park, Jinseok;Jang, Seongju;Lee, Jonghyuk;Kim, Dongwoo;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.1-14
    • /
    • 2024
  • Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generating Digital Terrain Models (DTMs) using UAV-based point clouds. A stream reach approximately 500 m of the Bokha stream in Icheon city was selected as the study area. Point clouds were obtained in August 1st, 2023, using Phantom 4 multispectral and Zenmuse L1 for Structure from Motion (SfM) and Light Detection And Ranging (LiDAR) respectively. Three vegetation filters, two morphological filters, and six composite filters which combined vegetation and morphological filters were applied in this study. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to assess each filters comparing with the two cross-sections measured by leveling survey. The vegetation filters performed better in SfM, especially for short vegetation areas, while the morphological filters demonstrated superior performance on LiDAR, particularly for taller vegetation areas. Overall, the composite filters combining advantages of two types of filters performed better than single filter application. The best method was the combination of Progressive TIN (PTIN) and Color Indicies of Vegetation Extraction (CIVE) for SfM, showing the smallest MAE of 0.169 m. The proposed method in this study can be utilized for constructing DTMs of stream and thus contribute to improving the accuracy of stream hydrodynamic simulations.

Development of a Traversability Map for Safe Navigation of Autonomous Mobile Robots (자율이동로봇의 안전주행을 위한 주행성 맵 작성)

  • Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • This paper presents a method for developing a TM (Traversability Map) from a DTM (Digital Terrain Model) collected by remote sensors of autonomous mobile robots. Such a map can be used to plan traversable paths and estimate navigation speed quantitatively in real time for robots capable of performing autonomous tasks over rough terrain environments. The proposed method consists of three parts: a DTM partition module which divides the DTM into equally spaced patches, a terrain information module which extracts the slope and roughness of the partitioned patches using the curve fitting and the fractal-based triangular prism method, and a traversability analysis module which assesses traversability incorporating with extracted terrain information and fuzzy inference to construct a TM. The potential of the proposed method is validated via simulation works over a set of fractal DTMs.

The Generation of Digital Orthophotos and Three Dimensional Models of an Urban Area from Digital Aerial Photos

  • Lee, Jin-Duk
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The digital photogrammetric products have been increasingly used as an accurate foundation for representing information associated with infrastructure management. The technological advances in merging raster and vector data within the framework of GIS have allowed for the inclusion of DTMs and digital orthophotos with vector data and its associated attributes. This study addresses not only generating DEMs and digital orthophotos but producing three dimensional building models from aerial photos of an urban area by employing the digital photogrammetric technology. DEMs and digital orthophotos were automatically generated through the process of orientations, image matching and so on, and then the practical problems, which must be solved especially in applying to urban areas, were considered. The accuracy of produced digital orthophotos was derived by using check points. Also three dimensional visualization imagery, which is useful in the landform analysis, and 3D building models were produced. Digital photogrammetric products would be used widely not only as GIS framework data layers by using the GIS link function which links attribute and image information in the database for applying to infrastructure management and but as geospatial data for especially 3D GIS in urban areas.

  • PDF