• 제목/요약/키워드: DTMB

검색결과 18건 처리시간 0.018초

데이터 페어링을 이용한 SDRAM의 전력 소모를 줄이는 DTMB 디인터리버 구조 (A DTMB Deinterleaver Structure to Reduce SDRAM Power Consumption with Data Pairing)

  • 강형주
    • 한국항행학회논문지
    • /
    • 제15권2호
    • /
    • pp.221-226
    • /
    • 2011
  • 본 논문에서는 SDRAM의 전력 소모를 줄이는 DTMB 디인터리버의 구조를 제안한다. DTMB는 중국의 디지털 TV 표준으로써, 길이가 긴 지연버퍼들로 이루어진 디인터리버를 가지고 있다. 이 디인터리버를 구현하려면 SDRAM이 필요하다. 본 논문에서는 디인터리버에서 데이터를 페어링하여 두 개의 데이터를 한 번에 SDRAM에 읽거나 쓰는 구조를 제안한다. 제안된 구조는 SDRAM을 동작시키는 횟수를 줄임으로써 SDRAM에서 소모되는 전력을 약 35% 줄일 수 있다.

버퍼 변환과 단일 위치 레지스터 구조를 이용한 저전력 DTMB 디인터리버 구조 (Low-Power DTMB Deinterleaver Structure Using Buffer Transformation and Single-Pointer Register Structure)

  • 강형주
    • 한국정보통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.1135-1140
    • /
    • 2011
  • 본 논문에서는 버퍼 변환과 단일 위치 레지스터 구조를 이용하여 SDRAM에서의 전력 소모를 줄이는 DTMB 디인터리버 구조를 제안하였다. 수신 성능 향상을 위해 인터리빙의 길이가 긴 DTMB의 디인터리버는 그 특성상 SDRAM에 긴 지연버퍼들을 배치하여 구현한다. 그러나 기존의 구조는 데이터를 읽고 쓸 때 마다 거의 매번 새로운 SDRAM row를 활성화하는 단점이 있다. 제안하는 구조에서는 버퍼 변환을 통해 길이가 짧은 여러 개의 지연버퍼로 변환함으로써 row 활성화 수를 줄이고, 단일 위치 레지스터 구조를 도입하여 위치 레지스터의 개수가 늘어나는 문제점을 보완하였다. 실험결과를 통해 면적은 거의 동일하면서 SDRAM에서의 전력 소모는 약 37%로 줄일 수 있음을 확인하였다.

Virtual maneuvering test in CFD media in presence of free surface

  • Hajivand, Ahmad;Mousavizadegan, S. Hossein
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.540-558
    • /
    • 2015
  • Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, $k-{\varepsilon}$ and SST $k-{\omega}$ in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

전산유체역학을 이용한 해양작업지원선의 빌지킬 유무에 따른 횡동요 성능에 관한 연구 (A study for roll damping performance of a platform supply vessel with or without bilge keel using CFD)

  • 석준;김성용;양영준;진송한;박종천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권9호
    • /
    • pp.791-798
    • /
    • 2016
  • 본 연구에서는 상용 점성 유동 해석 소프트웨어인 Star-CCM+를 이용하여 110m급 해양작업지원선의 빌지킬 효과에 따른 횡동요 성능에 관한 연구를 수행하였다. 해양작업지원선에 관한 연구에 앞서 DTMB 5512 선형에 대한 수치 시뮬레이션을 통해 실험과 비교 검증하였다. 검증된 결과를 바탕으로 빌지킬 유무에 따른 해양작업지원선의 자유 횡동요 시뮬레이션을 수행하였으며, 이를 통해 각각의 무차원 감쇠 계수와 횡동요 응답진폭함수를 산출하였다.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

선체주위 자유수면 유동 해석을 위한 VOF법 연구 (A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS)

  • 박일룡
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

Virtual simulation of maneuvering captive tests for a surface vessel

  • Hajivand, Ahmad;Mousavizadegan, S. Hossein
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.848-872
    • /
    • 2015
  • Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zig-zag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제10권1호
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.

트랜섬 선미 후방의 점성 유동장 Topology 관찰 (Topological View of Viscous Flow behind Transom Stern)

  • 김우전;박일룡
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.