• Title/Summary/Keyword: DTL

Search Result 79, Processing Time 0.031 seconds

Expression of UT-A in Rat Kidney: Ultrastructural Immunocytochemistry (흰쥐 콩팥에서 요소운반체-A의 발현: 미세구조적 면역세포화학법)

  • Lim, Sun-Woo;Jung, Ju-Young;Kim, Wan-Young;Han, Ki-Hwan;Cha, Jung-Ho;Chung, Jin-Woong;Kim, Jin
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.91-105
    • /
    • 2002
  • Urea transport in the kidney is mediated by a family of transporter proteins that includes renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). The cDNA of five isoforms of rat UT-A, UTA1, UT-A2, UT-A3, UT-A4, and UT-A5 have been cloned. The purpose of this study was to examine the expression of UT-A (L194), which marked UT-A1, UT-A2 and UT-A4. Male Sprague-Dawley rats, weighing approximately 200 g, were divided into three group: control rats had free access to water, dehydrated rats were deprived of water for 3 d, and water loaded rats had free access to 3% sucrose water for 3 d before being killed. The kidneys were preserved by in vivo perfusion through the abdominal aorta with the 2% paraformaldehyde-lysine- periodate (PLP) or 8% paraformaldehyde solution for 10 min. The sections were processed for immunohistochemical studies using pre-embedding immunoperoxidase method and immunogold method. In the normal rat kidney, UT-A1 was expressed intensely in the cytoplasm of the inner medullary collecting duct (IMCD) cell and UT-A2 was expressed on the plasma membrane of the terminal portion of the shortloop descending thin limb (DTL) cells (type I epithelium) and of the long-loop DTL cells (type II epithelium) in the initial part of the inner medulla. Immunoreactivity for UT-A1 in the IMCD cells, was decreased in dehydrated animals whereas strongly increased in water loaded animals compared with control animals. In the short-loop DTL, immunoreactivity for UT-A2 was increased in intensity in both dehydrated and water loaded groups. However, in the long-loop DTL of the outer part of the inner medulla, immunoreactivity for UT-A2 was markedly increase in intensity in dehydrated group, but not in water loaded group. In conclusion, in the rat kidney, UT-A1 is located in the cytoplasm of IMCD cells, whereas UT-A2 is located in the plasma membrane of both the short-and long-loop DTL cells. Immunohistochemistry studies revealed that UT-A1 and UT-A2 may have a different role in urea transport and are regulated by different mechanisms.

Numerical Simulation of Sloshing Test for Fuel Tank of Rotorcraft (회전익항공기용 연료탱크 슬로싱 시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.687-693
    • /
    • 2016
  • The rapid turning and acceleration movement of a rotorcraft leads to a sloshing phenomenon in the fuel tank. Sloshing caused by rapid movement can affect the internal components by creating an excessive load. In severe situations, the resulting damage to the internal components and pipes can also lead to the tearing of the fuel tank itself. Therefore, to improve the survivability of the crew, the internal components of the fuel tank must be designed to retain their structural soundness during the sloshing phenomenon. In order to accomplish this, the sloshing load acting on the components first needs to be determined. This paper investigates the sloshing load applied to the internal components by performing numerical analysis for rotary-wing aircraft fuel tanks in the sloshing test. Fluid-Structural Interaction (FSI) analysis based on smoothed particle hydrodynamics (SPH) is conducted and the conditions specified in the US military standard (MIL-DTL-27422D) are employed for the numerical simulation. Based on this numerical simulation, by analyzing the load applied to the internal components of the fuel tank due to the sloshing phenomenon, the possibility of obtaining the design data by numerical analysis is examined.

Numerical Simulation of Crash Impact Test for Fuel Tank of Rotorcraft (회전익항공기용 연료탱크 충돌충격시험 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Kim, Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.521-530
    • /
    • 2011
  • Since aircraft fuel tanks have many interfaces connected to the airframe as well as the fuel system, they have been considered as one of the system-dependent critical components. Crashworthy fuel tanks have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel tanks to prevent most, hopefully all, fatality due to post-crash fire. The mandatory crash impact test required by the relevant specification, MIL-DTL-27422D, has been recognized as a non-trivial mission and caused inevitable delay of a number of noticeable rotorcraft development programs such as that of V-22. The crash impact test itself takes a long-term preparation efforts together with costly fuel tank specimens. Thus a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel tanks. In the present study the crash impact simulation of a few fuel tank configurations is conducted with the commercial package, Autodyn, and the resulting equivalent stresses and internal pressures are evaluated in detail to suggest a design improvement for the fuel tank configuration.

A Case Study on Multiple-deck-charge Blasting with Electronic Detonators (전자뇌관과 다단장약을 이용한 발파 사례 연구)

  • Ko, Tae Young;Shin, Chang Oh;Lee, Hyo;Lee, Seung Cheol
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.52-58
    • /
    • 2012
  • A TBM launching shaft in DTL2 Contract 915 site is located in a typical hard Bukit Timah granite formation and lots of blasting work is required for shaft sinking. The original blast design used the electric detonator and ANFO blasts consisting of 30 holes per one blast with 1.5 m depth of drilling hole. However, significant delay of work and poor progress were expected due to the limitation of the number of blasting hole and strict vibration regulation on retaining systems. To overcome such constraints, an efficient new blasting method which can improve productivity and satisfy vibration limit was required. The revised blast design, using triple-deck blasts with electronic detonators and cartridge emulsion explosives, gives better construction performance and can reduce construction time. Such a new blasting technique can be effectively used for similar underground projects in the future where the volume of rock blasting is significant.

Instruction Queue Architecture for Low Power Microprocessors (마이크로프로세서 전력소모 절감을 위한 명령어 큐 구조)

  • Choi, Min;Maeng, Seung-Ryoul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.56-62
    • /
    • 2008
  • Modern microprocessors must deliver high application performance, while the design process should not subordinate power. In terms of performance and power tradeoff, the instructions window is particularly important. This is because a large instruction window leads to achieve high performance. However, naive scaling conventional instruction window can severely affect the complexity and power consumption. This paper explores an architecture level approach to reduce power dissipation. We propose a low power issue logic with an efficient tag translation. The direct lookup table (DTL) issue logic eliminates the associative wake-up of conventional instruction window. The tag translation scheme deals with data dependencies and resource conflicts by using bit-vector based structure. Experimental results show that, for SPEC2000 benchmarks, the proposed design reduces power consumption by 24.45% on average over conventional approach.

Slosh & Vibration Qualification Test for Fuel tank of Rotorcraft (헬기용 연료탱크 Slosh & Vibration 인증시험)

  • Jung, Tae-Kyong;Jang, Ki-Won;Jun, Pil-Sun;Ha, Byoung-Geun;Kim, Sung-Chan;Kim, Hyun-Gi;Lee, Gui-Cheon;Shin, Dong-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.713-716
    • /
    • 2010
  • Slosh and vibration effects of fuel inside of fuel tank can be occurred due to the acceleration and flight speed during the rotorcraft flight. It can lead to the failure of internal fuel component and fuel tank skin can be damaged. This is directly related to human survival. Military specification (MIL-DTL-27422D) specifies that stability of aircraft fuel tank and internal component against slosh &vibration load shall be verified through the qualification test procedures. This report shows the establishment of slosh and vibration test facility and KUH fuel tank qualification test result.

  • PDF

Development of Fire Extinguisher Valves for Tracked Vehicle Using Novec1230 (친환경 소화약제 Novec1230을 적용하는 궤도차량용 소화기밸브 개발)

  • Kim, Jong-Ryeol;Ku, Hak-Keun;Oh, Sang-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1539-1546
    • /
    • 2011
  • Halon which is one of the typical fire extinguishing agents for special purposes was banned not only to use but to manufacture because it destroys the earth's ozone layer. There have been many efforts to find or create Halon alternatives and Novec1230 which is one of the eco-friendly fire extinguishing agents is nominated. In this paper 6 kinds of valve structures were suggested to apply Novec1230 to fire extinguishing agents for railroad vehicles as Novec1230 needs different valve specifications from Halon and spray shapes and action time were compared and measured. As the results, the extinguishing times of A type and F type valves are 20% faster than the other 4 types, and 178% faster than MIL-DTL-62547(USA). Therefore, they can be suggested to the eco-friendly extinguishing agents and Novec1230.