• 제목/요약/키워드: DT(Decision table)

검색결과 2건 처리시간 0.016초

소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교 (Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems)

  • 김찬주;황규백
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권5호
    • /
    • pp.345-349
    • /
    • 2009
  • 소결 북마킹(social bookmarking) 시스템은 사용자가 북마크를 저장하고 공유할 수 있는 플랫폼을 제공하는 웹 기반(web-based) 시스템으로 폭소노미(folksonomy)를 이용한 대표적인 웹2.0 서비스이다. 소셜 북마킹 시스템에서의 스패머(spammer)란 자신들의 이익을 위해서 시스템을 고의적으로 악용하는 사람을 말한다. 스패머는 많은 양의 잘못된 정보를 시스템에 포스팅(posting)하기 때문에 전체 소셜 북마킹 시스템의 리소스(resource)를 쓸모없게 만들어 버린다. 따라서, 스패머를 빠른 시간 안에 탐지하고 그들의 접근을 차단하는 것은 시스템의 붕괴를 방지하기 위해 중요하다. 본 논문에서는 사용자가 사용한 태그에 대한 데이터를 추출하여, 사용자가 스패머 인지 아닌지를 예측하는 모델을 기계학습의 다양한 방법을 적용하여 생성한 후 그 성능을 비교해 보았다. 구체적으로, 결정테이블 (decision table, DT), 결정트리(decision tree, ID3), 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier), TAN(tree-augmented $na{\ddot{i}}ve$ Bayes) 분류기, 인공신경망(artificial neural network)의 방법을 비교하였다. 그 결과 AUC(area under the ROC curve)와 모델 생성시간을 고려하였을 때 나이브 베이즈 분류기가 가장 만족할 만한 성능을 보였다. 나이브 베이즈 분류기의 분류 결과가 가장 좋았던 이유는 성능을 비교하는 데 사용된 AUC가 결정트리 계열의 방법(ID3 등)보다 나이브 베이즈 분류기에서 일반적으로 높게 나오는 경향이 있다는 것과, 스패머 탐지 문제가 선형으로 분리 가능한 경우(lineally separable)와 유사할 가능성이 높기 때문으로 여겨진다.

웹 기반의 도시철도 전문가시스템 개발에 관한 연구 (A Study on the Development of Web-based Expert System for Urban Transit)

  • 김현준;배철호;김성빈;이호용;김문현;서명원
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.163-170
    • /
    • 2005
  • Urban transit is a complex system that is combined electrically and mechanically, it is necessary to construct maintenance system for securing safety accompanying high-speed driving and maintaining promptly. Expert system is a computer program which uses numerical or non-numerical domain-specific knowledge to solve problems. In this research, we intend to develop the expert system which diagnose failure causes quickly and display measures. For the development of expert system, standardization of failure code classification system and creation of BOM(Bill Of Materials) have been first performed. Through the analysis of failure history and maintenance manuals, knowledge base has been constructed. Also, for retrieving the procedure of failure diagnosis and repair linking with the knowledge base, we have built RBR(Rule Based Reasoning) engine by pattern matching technique and CBR(Case Based Reasoning) engine by similarity search method. This system has been developed based on web to maximize the accessibility.