• Title/Summary/Keyword: DST 모델

Search Result 13, Processing Time 0.022 seconds

Verification of the Boundary Conditions Used for Generating g-functions and Development of a TRNSYS Simulation Model Using g-functions (트랜시스를 이용한 지열 응답 함수 경계 조건 검증 및 시뮬레이션 모델 개발에 관한 연구)

  • Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.416-423
    • /
    • 2014
  • To verify different boundary conditions on the borehole wall, which are commonly used for generating g-function, the well-known TRNSYS simulation model, DST (Duct STorage), is employed. By letting the fluid circulation determine the borehole wall conditions, a DST-based g-function is induced with numerical processes proposed in this work. A new TRNSYS module is also developed to accommodate g-function data and predict dynamic outlet fluid temperatures. Results showed that the modified g-function, which is different from Eskilson's original g-function, is closer to the DST-based g-function. This implies that the uniform heat transfer rates over the height can be used for good approximation. In fact, simulations with the modified g-function showed similar results as the DST model, while Eskilson g-function case deviated from the DST model as time progressed.

Performance Prediction of Geothermal Heat Pump System by Line-Source and Modified DST(TRNVDSTP) Models (선형열원 모델과 수정 DST(TRNVDSTP) 모델에 의한 지열 히트펌프 시스템 성능 예측)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2012
  • Geothermal heat pump(GHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some experimental work related to performance evaluation of GHP systems with vertical borehole ground heat exchangers for commercial buildings has been done, relatively little has been reported on the performance simulation of these systems. The aim of this study is to evaluate the cooling and heating performance of the GHP system with 30 borehole ground heat exchangers applied to an commercial building($1,210m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, circulating pump, borehole diameter, and ground effective thermal properties, etc. The cooling and heating performance prediction of the system was conducted with different prediction methods and then each result is compared.

Comparing Directional Parameters of Very Fast Halo CMEs (코로나질량방출의 방향지시 매개인수 비교)

  • Rho, Su-Lyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.383-394
    • /
    • 2008
  • We examine geoeffective directional parameters of coronal mass ejections (CMEs). We select 30 front-side halo CMEs from SOHO LASCO CMEs whose speed is larger than 1000km/s and longitude is less than ${\pm}30^{\circ}$. These are thought to be the most plausible candidate of geoeffective CMEs. We examine the relation between CMEs directional parameters (Earthward direction, eccentricity, ${\Delta}$ distance and central angle parameter) and the minimum value of the Dst index. We have found that the Earthward direction parameter has a good correlation with the Dst index, the eccentricity parameter has a much better correlation with the Dst index. The bo distance and central angle parameter has a poor correlation with the Dst index. It's, however, well correlated with the Dst index in very strong geomagnetic storms. Most of CMEs causing very strong storms (Dst ${\leq}$-200nT) are found to have large Earthward direction parameter $({\geq}0.6)$, small eccentricity, bo distance and central angle parameters $(E{\leq}0.4,\;{\Delta}X\;and\;sin\;{\theta}{\leq}0.2)$. These directional parameters are very important parameters that control the geoeffectiveness of very fast front-side halo CMEs.

The Understanding of Depression Subtypes (우울증 아형들의 이해)

  • Han, Chang-Hwan;Ryu, Seong Gon
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.20-36
    • /
    • 2001
  • The debate about whether depressive disorders should be divided into categories or arrayed along a continuum has gone for decade, without resolution. In our review, there is more evidence consistent with the spectrum concept than there is with the idea that depressive disorders constitute discrete clusters marked by relatively discontinuous boundaries. First, "depression spectrum", "is there a common genetic factors in bipolar and unipolar affective disorder", "threshold model of depression" and "bipolar spectrum disorder" are reviewed. And, a new subtype of depression is so called SeCA depression that is a stressor-precipitated, cortisol-induced, serotonin-related, anxiety/aggression-driven depression. SeCA depression is discussed. But, there is with the idea that depressive disorders constitute discrete subtypes marked by relatively discontinuous boundaries. This subtypes of depressive disorder were reviewed from a variety of theoretical frames of reference. The following issues are discussed ; Dexamethasone suppression test(DST), TRH stimulation test, MHPG, Temperament Character Inventory(TCI), and heart rate variability(HRV).

  • PDF

Sizing of Vertical Borehole Heat Exchangers using TRNOPT (TRNOPT를 이용한 수직 지중열교환기 길이 산정 방법에 관한 연구)

  • Park, Seung-Hoon;Lee, Hyun-Soo;Jang, Young-Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.402-407
    • /
    • 2016
  • Ground-coupled heat pump systems have been widely used, as they are regarded as a renewable energy source and ensure a high annual efficiency. Among the system components, borehole heat exchangers (BHE) play an important role in decreasing the entering water temperature (EWT) to heat pumps in the cooling season, and consequently improve the COP. The optimal sizing of the BHEs is crucial for a successful project. Other than the existing sizing methods, a simulation-based design tool is more applicable for modern complex geothermal systems, and it may also be useful since design and engineering works operate on the same platform. A simulation-based sizing method is proposed in this study using the well-known Duct STorage (DST) model in Trnsys. TRNOPT, the Trnsys optimization tool, is used to search for an optimal value of the length of BHEs under given ground loads and ground properties. The result shows that a maximum EWT of BHEs during a design period (10 years) successfully approaches the design EWT while providing an optimal BHE length. Compared to the existing design tool, very similar lengths are calculated by both methods with a small error of 1.07%.

Optimized Design of Air Controlling System in Air Defense Gun Systems of Wheeled Vehicle (차륜형 대공포의 냉방기 최적화 설계)

  • Jeon, Ki-Hyun;Lee, Boo-Hwan;Lee, Dong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1047-1051
    • /
    • 2013
  • A modern combat vehicle needs to have a separate air-conditioning unit, although new combat systems tend to employ an integrated heating, cooling, and ventilating system. In this study, we investigated an air conditioning unit for an armored combat wheeled vehicle as a special use and military specification and performed a case study of a unique military combat vehicle. By using Fluent software, we tried to determine a suitable air ducting method and its location in the armored combat vehicle. The results show that an air-conditioning unit is one of the best solutions for wheeled vehicles that are not equipped with a cooling unit for their crews, and it can be applied to similar types of armored vehicles.

A DETECTION STUDY OF THE IONOSPHERIC TOTAL ELECTRON CONTENTS VARIATIONS USING GPS NETWORK (GPS 기준국망을 이용한 전리층 총전자수 변화 검출 연구)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2007
  • We established a regional ionospheric model for investigating ionospheric TEC (Total Electron Contents) variations over the Korean Peninsula during major geomagnetic storms. In order to monitor the ionospheric TEC variations, we used nine permanent GPS reference stations uniformly distributed in South Korea operated by the Korea Astronomy and Space Science Institute (KASI). The cubic spline smoothing (CSS) interpolation method was used to analyze the characteristics of the ionospheric TEC variations. It has been found that variations of TEC over the Korean Peninsula increase when a major geomagnetic storm occurred on November 20, 2003. The TEC has increased about one and a half of those averaged quite days at the specific time during a geomagnetic storm. It has been indicated that the KASI GPS-derived TEC has a correlation with the geomagnetic storm indices (eq. Kp and Dst indices).

자기폭풍예보모델을 이용한 우주환경예보

  • 안병호
    • Information and Communications Magazine
    • /
    • v.15 no.9
    • /
    • pp.97-106
    • /
    • 1998
  • It is crucial to predict the variabilities of the near-earth space environment associated with the solar activity, which cause enormous socio-economic impacts on mankind. The geomagnetic storm prediction scheme adopted in this study is designed to predict such variabilities in terms of the geomagnetic indices, AE and Dst, the cross-polar cap potential difference, the energy dissipation rate over the polar ionosphere and associated temperature increase in the thermosphere. The prediction code consists of two parts; prediction of the solar wind and interplanetary magnetic field based upon actual flare observations and estimation of various electrodynamic quantities mentioned above from the solar wind-magnetosphere coupling function 'epsilon' which is derivable through the predicted solar wind parameters. As a test run, the magnetic storm that occurred in early November, 1993, is simulated and the results are compared with the solar wind and the interplanetary magnetic field measured by the Japanese satellite, Geotail, and the geomagnetic indices obtained from ground magnetic observatories. Although numerous aspects of the code are to be further improved, the comparison between the simulated results and the actual measurements encourages us to use this prediction scheme as the first appoximation in forecasting the disturbances of the near-earth space environment associated with solar flares.

  • PDF

Accuracy of Fire of a Mortar via Multibody Dynamics Analysis (다물체 동역학 해석을 통한 포의 사격정확도 분석)

  • Jin, Jae Hoon;Jung, Samuel;Kim, Tae Yoon;Kim, Young Ku;Ahn, Chang Gi;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.229-236
    • /
    • 2016
  • For this research, the trajectory of a projectile was simulated via the multibody dynamics analysis of a self-propelled mortar. The dynamic model was composed of a mortar model and a vehicle model, and was simulated using the RecurDyn program. Interior ballistic was applied to the mortar model, and exterior ballistic was conducted by Matlab using the simulation results of the interior trajectory. Through repetitive Monte-Carlo simulations, the accuracy of the mortar was analyzed by considering variations in the aiming angle and vehicle dynamic response.

Development of an Electric Circuit Transient Analogy Model in a Vertical Closed Loop Ground Heat Exchanger (수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발)

  • Kim, Won-Uk;Park, Hong-Hee;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.