• Title/Summary/Keyword: DSSC efficiency

Search Result 180, Processing Time 0.024 seconds

A Study of Surface Modification of TiO2 Semiconductor Electrode by Various Overlayers Coating in Dye Sensitized Solar Cells(DSSC) (염료감응형 태양전지에서 $TiO_2$ 반도체전극 표면의 다양한 overlayer 코팅에 따른 특성연구)

  • Kim, Jun-Tak;Kim, Sang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.100-100
    • /
    • 2009
  • $TiO_2$ is widely being used as a semiconductor electrode for DSSC. Anti-recombination property and surface area of $TiO_2$ give an important influence to the DSSC efficiency. In this study, $TiO_2$ electrode was fabricated on FTO using screen printing method. Various overlayers were coated on them by dip coating in solution of saturated $Ba(NO_3)_2$, $Mg(NO_3)_2$ and $N_{2}O_{6}Sr$. They reduced the recombination of electrons from photo excited state of Ru dye. The atmospheric plasma treatment was applied to both the $TiO_2$ and each overlayer coated $TiO_2$ surfaces to improve contact ability with dye. We prepared four samples, one sample has bare $TiO_2$ surfaces to improve contact ability with dye. We prepared four samples, one sample has bare $TiO_2$ electrode and the other samples consist of each overlayer coated $TiO_2$ electrodes. We used XRD, FE-SEM, J-V, IPCE and EIS in order to investigate characteristic.

  • PDF

Properties of Working Electrodes with IGZO layers in a Dye Sensitized Solar Cell

  • Kim, Gunju;Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • We prepared a working electrode (WE) coated with 0 ~ 50 nm-thick indium gallium zinc oxide(IGZO) by using RF sputtering to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructure and composition of the IGZO layer. UV-VIS-NIR spectroscopy was used to determine the transparency of the WE with IGZO layers. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with IGZO layer. From the results of the microstructural analysis, we were able to confirm the successful deposition of an amorphous IGZO layer with the expected thickness and composition. From the UV-VIS-NIR analysis, we were able to verify that the transparency decreased when the thickness of IGZO increased, while the transparency was over 90% for all thicknesses. The photovoltaic results show that the ECE became 4.30% with the IGZO layer compared to 3.93% without the IGZO layer. As the results show that electron mobility increased when an IGZO layer was coated on the $TiO_2$ layer, it is confirmed that the ECE of a DSSC can be enhanced by employing an appropriate thickness of IGZO on the $TiO_2$ layer.

Properties of Working Electrodes with Nano YBO3:Eu3+ Phosphor in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.253-257
    • /
    • 2016
  • We added 0 ~ 5 wt% $YBO_3:Eu^{3+}$ nano powders in a scattering layer of a working electrode to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). FESEM and XRD were used to characterize the microstructure and phase. PL and micro Raman were used to determine the fluorescence and the composition of $YBO_3:Eu^{3+}$ phosphor. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with $YBO_3:Eu^{3+}$. From the results of the microstructure and phase of the fabricated $YBO_3:Eu^{3+}$ nano powders, we identified $YBO_3:Eu^{3+}$ having particle size less than 100 nm. Based on the microstructure and micro Raman results, we confirmed the existence of $YBO_3:Eu^{3+}$ in the scattering layer and found that it was dispersed uniformly. Through photovoltaic properties results, the maximum ECE was shown to be 5.20%, which can be compared to the value of 5.00% without $YBO_3:Eu^{3+}$. As these results are derived from conversion of light in the UV range into visible light by employing $YBO_3:Eu^{3+}$ in the scattering layer, these indicate that the ECE of a DSSC can be enhanced by employing an appropriate amount of $YBO_3:Eu^{3+}$.

Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells (형광물질을 이용한 염료감응태양전지의 효율향상)

  • Cheon, JongHun;Lee, JeongGwan;Jung, MiRan;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Comparison assessment of semi-transparent solar cell for BIPV windows (반투과형 태양전지를 이용한 창호형 BIPV 건물의 환경성능 분석)

  • Chung, Min Hee
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2020
  • To implement the planning of zero-energy buildings, their energy performance must be improved, and renewable energy applications must also be included. To accelerate the use of renewable energies in such buildings, BIPVs should be actively used in windows and on roofs. Window-type BIPVs are being developed in various forms depending on the size, composition, area ratio of the window, specification of glass, and so on. To analyze the applicability of various solar cells as window-type BIPVs, in this study, we evaluated their applicability, at the current development level, by analyzing the indoor illuminance, heat gain and heat loss; the cooling, heating, and lighting energy levels; and the generation performance of the various solar cells. To enhance the future applicability of window type BIPV, we analyze the overall energy performance of the building, according to changes in visible light transmittance and generation efficiency. The main research results are as follows. The area ratios above the standard illuminance, based on the window type and according to the VLT, were in order of low-e glazing, a-Si window, DSSC window, and c-Si window. The heat gain of the semi-transparent solar cell winodw was remarkably low. The energy consumption of buildings was highest in the order of c-Si window, DSSC window, a-Si window, and clear low-e window. However, in the case of including the power generation performance of the solar cell, the energy consumption was found to be high in order of DSSC window, c-Si window, a-Si window, and clear low-e window. In the future, if a window-type BIPV is developed, we believe that improvement in power generation performance and improvement in visible light transmittance will be needed.

Degradation of a nano-thick Au/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells (염료감응태양전지의 Au/Pt 이중 촉매층의 전해질과의 반응에 따른 열화)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4013-4018
    • /
    • 2014
  • A 0.45 $cm^2$ DSSC device with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/50 nm-Pt/50 nm-Au/FTO/glass was prepared to examine the stability of the Au/Pt bilayered counter electrode (CE) with electrolyte and the energy conversion efficiency (ECE) of dye-sensitized solar cells (DSSCs). For comparison, a 100 nm-thick Pt only CE DSSC was also prepared using the same method. The photovoltaic properties, such as the short circuit current density ($J_{sc}$), open circuit voltage ($V_{oc}$), fill factor (FF), and ECE, were checked using a solar simulator and potentiostat with time after assembling the DSSC. The microstructure of the Au/Pt bilayer was examined by optical microscopy after 0~25 minutes. The ECE of the Pt only CE-employed DSSC was 4.60 %, which did not show time dependence. On the other hand, for the Au/Pt CE DSSC, the ECEs after 0, 5 and 15 minutes were 5.28 %, 3.64 % and 2.09 %, respectively. The corrosion areas of the Au/Pt CE determined by optical microscopy after 0, 5, and 25 minutes were 0, 21.92 and 34.06 %. These results confirmed that the ECE and catalytic activity of Au/Pt CE decreased drastically with time. Therefore, a Au/Pt CE-employed DSSC may be superior to the Pt only CE-employed one immediately after integration of the device, but it would degrade drastically with time.

Electrochemical properties of Graphene based $TiO_2$ photoelectrode for dye-sensitized solar cells (염료감응형 태양전지용 $TiO_2$ 광전극에 Graphene을 이용한 전기화학적 특성)

  • Wang, Jiao;Zhao, Xing Guan;Jin, En Mei;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bo-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-134
    • /
    • 2009
  • We studied electrochemical properties of $TiO_2$ photoelectrode based graphene for dye-sensitized solar cells(DSSC). Gaphene has good electric conductivity and it is very good transparent when this is coated on monolayer. we prepared photoelectrode by squeeze methode and researched photoelectrical properties of $TiO_2$ electrode base gaphene. DSSC based on graphene was obtained conversion efficiency of 5.4% under irradiation of AM 1.5(100 $mWcm^2$).

  • PDF

The Preparation of Alumina Particles Wrapped in Few-layer Graphene Sheets and Their Application to Dye-sensitized Solar Cells

  • Ahn, Kwang-Soon;Seo, Sang-Won;Park, Jeong-Hyun;Min, Bong-Ki;Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1579-1582
    • /
    • 2011
  • Alumina particles wrapped in few-layer graphene sheets were prepared by calcining aluminum nitride powders under a mixed gas flow of carbon monoxide and argon. The graphene sheets were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The few-layer graphene sheets, which wrapped around the alumina particles, did not exhibit any diffraction peaks in the XRD patterns but did show three characteristic bands (D, G, and 2D bands) in the Raman spectra. The dye-sensitized solar cell (DSSC) with the alumina particles wrapped in few-layer graphene sheets exhibited significantly improved overall energy-conversion efficiency, compared to conventional DSSC, due to longer electron lifetime.

Characteristics of Ti Thin films and Application as a Working Electrode in TCO-Less Dye-Sensitized Solar Cells

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • The structural, electrical and optical properties of Ti thin films fabricated by dual magnetron sputtering were investigated under various film thicknesses. The fabricated Ti thin films exhibited uniform surfaces, crystallinity, various grain sizes, and with various film thicknesses. Also, the crystallinity and grain size of the Ti thin films increased with the increase of film thickness. The electrical properties of Ti thin films improved with the increase of film thickness. The results showed that the performance of TCO-less DSSC critically depended on the film thickness of the Ti working electrodes, due to the conductivity of Ti thin film. However, the maximum conversion efficiency of TCO-less DSSC was exhibited at the condition of 100 nm thickness due to the surface scattering of photons caused by the variation of grain size.

Sol-Gel Derived Nitrogen-Doped TiO2 Photoanodes for Highly Efficient Dye-Sensitized Solar Cells

  • Kim, Sang Gyun;Ju, Myung Jong;Choi, In Taek;Choi, Won Seok;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • N-doped anatase $TiO_2$ nanoparticles were prepared by the sol-gel process followed by a hydrothermal treatment and successfully used as the photoanodes in organic dye-sensitized solar cells (DSSCs). As expected, the power conversion efficiency (PCE) of 8.44% was obtained for the NKX2677/HC-A-sensitized DSSC based on the 30 mol% N-doped $TiO_2$ photoanode, which was an improvement of 23% relative to that of the DSSC based on the NKX2677/DCA.