• Title/Summary/Keyword: DSRC travel time

Search Result 23, Processing Time 0.019 seconds

An Expressway Path Travel Time Estimation Using Hi-pass DSRC Off-Line Travel Data (하이패스 DSRC 자료를 활용한 고속도로 오프라인 경로통행시간 추정기법 개발)

  • Shim, Sangwoo;Choi, Keechoo;Lee, Sangsoo;NamKoong, Seong J.
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.45-54
    • /
    • 2013
  • Korea Expressway Corporation has been utilizing vehicles equipped with dedicated short range communication (DSRC) based on-board equipment (OBE) for collecting path travel times. A path based method (PBM) estimates the path travel time using probe vehicles traveling whole links on the path, so it is not always possible to obtain sufficient samples for calculating path travel time in the DSRC system. Having this problem in utilizing DSRC for travel time information, this study attempted to estimate path travel time with the help of a link based method (LBM) and examined whether the LBM can be used for obtaining reliable path travel times. Some comparisons were made and identified that the MAPE difference between the LBM and the PBM estimates are less than 3%, signaling that LBM can be used as a proxy for PBM in case of sparse sample conditions. Some limitations and a future research agenda have also been proposed.

Expressway Travel Time Prediction Using K-Nearest Neighborhood (KNN 알고리즘을 활용한 고속도로 통행시간 예측)

  • Shin, Kangwon;Shim, Sangwoo;Choi, Keechoo;Kim, Soohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1873-1879
    • /
    • 2014
  • There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

Short-Term Prediction of Travel Time Using DSRC on Highway (DSRC 자료를 이용한 고속도로 단기 통행시간 예측)

  • Kim, Hyungjoo;Jang, Kitae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2465-2471
    • /
    • 2013
  • This paper develops a travel time prediction algorithm that can be used for real-time application. The algorithm searches for the most similar pattern in historical travel time database as soon as a series of real-time data become available. Artificial neural network approach is then taken to forecast travel time in the near future. To examine the performance of this algorithm, travel time data from Gyungbu Highway were obtained and the algorithm is applied. The evaluation shows that the algorithm could predict travel time within 4% error range if comparable patterns are available in the historical travel time database. This paper documents the detailed algorithm and validation procedure, thereby furnishing a key to generating future travel time information.

A Study on Spatial Aggregation Method for Path Travel Time Estimation using Hi-Pass DSRC System (하이패스 DSRC 기반의 경로통행시간 산정을 위한 공간적 집계방안 산정에 관한 연구)

  • Lee, Hwanpil;Shim, Sangwoo;Choi, Yuntaek;Kim, Dongin
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.119-129
    • /
    • 2014
  • PURPOSES : This investigational survey is to observe a proper spatial aggregation method for path travel time estimation using the hi-pass DSRC system. METHODS : The links which connect the nodes of section detectors location are used for path travel time estimation traditionally. It makes some problem such as increasing accumulation errors and processing times. In this background, the new links composition methods for spatial aggregation are considered by using some types of nodes as IC, JC, RSE combination. Path travel times estimated by new aggregation methods are compared with PBM travel times by MAE, MAPE and statistical hypothesis tests. RESULTS : The results of minimum sample size and missing rate for 5 minutes aggregation interval are satisfied except for JC link path travel time in Seoul TG~Kuemho JC. Thus, it was additionally observed for minimum sample size satisfaction. In 15, 30 minutes and 1 hour aggregation intervals, all conditions are satisfied by the minimum sample size criteria. For accuracy test and statistical hypothesis test, it has been proved that RSE, Conzone, IC, JC links have equivalent errors and statistical characteristics. CONCLUSIONS : There are some errors between the PBM and the LBM methods that come from dropping vehicles by rest areas. Consequently, this survey result means each of links compositions are available for the estimation of path travel time when PBM vehicles are missed.

Analysis Period of Input Data for Improving the Prediction Accuracy of Express-Bus Travel Times (고속버스 통행시간 예측의 정확도 제고를 위한 입력자료 분석기간 선정 연구)

  • Nam, Seung-Tae;Yun, Ilsoo;Lee, Choul-Ki;Oh, Young-Tae;Choi, Yun-Taik;Kwon, Kenan
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.99-108
    • /
    • 2014
  • PURPOSES : The travel times of expressway buses have been estimated using the travel time data between entrance tollgates and exit tollgates, which are produced by the Toll Collections System (TCS). However, the travel time data from TCS has a few critical problems. For example, the travel time data include the travel times of trucks as well as those of buses. Therefore, the travel time estimation of expressway buses using TCS data may be implicitly and explicitly incorrect. The goal of this study is to improve the accuracy of the expressway bus travel time estimation using DSRC-based travel time by identifying the appropriate analysis period of input data. METHODS : All expressway buses are equipped with the Hi-Pass transponders so that the travel times of only expressway buses can be extracted now using DSRC. Thus, this study analyzed the operational characteristics as well as travel time patterns of the expressway buses operating between Seoul and Dajeon. And then, this study determined the most appropriate analysis period of input data for the expressway bus travel time estimation model in order to improve the accuracy of the model. RESULTS : As a result of feasibility analysis according to the analysis period, overall MAPE values were found to be similar. However, the MAPE values of the cases using similar volume patterns outperformed other cases. CONCLUSIONS : The best input period was that of the case which uses the travel time pattern of the days whose total expressway traffic volumes are similar to that of one day before the day during which the travel times of expressway buses must be estimated.

Evaluation of Travel Time Prediction Reliability on Highway Using DSRC Data (DSRC 기반 고속도로 통행 소요시간 예측정보 신뢰성 평가)

  • Han, Daechul;Kim, Joohyon;Kim, Seoungbum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.86-98
    • /
    • 2018
  • Since 2015, the Korea Expressway Corporation has provided predicted travel time information, which is reproduced from DSRC systems over the extended expressway network in Korea. When it is open for public information, it helps travelers decide optimal routes while minimizing traffic congestions and travel cost. Although, sutiable evaluations to investigate the reliability of travel time forecast information have not been conducted so far. First of all, this study seeks to find out a measure of effectiveness to evaluate the reliability of travel time forecast via various literatures. Secondly, using the performance measurement, this study evaluates concurrent travel time forecast information in highway quantitatively and examines the forecast error by exploratory data analysis. It appears that most of highway lines provided reliable forecast information. However, we found significant over/under-forecast on a few links within several long lines and it turns out that such minor errors reduce overall reliability in travel time forecast of the corresponding highway lines. This study would help to build a priority for quality control of the travel time forecast information system, and highlight the importance of performing periodic and sustainable management for travel time forecast information.

A Study on Calculation of Sectional Travel Speeds of the Interrupted Traffic Flow with the Consideration of the Characteristics of Probe Data (프로브 자료의 특성을 고려한 단속류의 구간 통행속도 산출에 관한 연구)

  • Jeong, Yeon Tak;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1851-1861
    • /
    • 2014
  • This study aims to calculate reliable sectional travel speeds with the consideration of the characteristics of the probe data collected in the interrupted traffic flow. First, in order to analysis the characteristics of the probe data, we looked into the distribution of the sectional travel times of each probe vehicle and compared the difference in the sectional travel speeds of each probe vehicle collected by DSRC. As a result, it is shown that outliers should be removed for the distribution of the sectional travel times. However, The comparison results show that the sectional travel speeds from the DSRC probe vehicles are not significantly different. Finally, based on the distribution characteristics of the sectional travel speeds of each probe vehicle and the representative values counted during a collection period, we drew the optimal outlier removal procedure and evaluated the estimation errors. The evaluation results showed that the DSRC sectional travel speeds were found to be similar to the observed values from actually running vehicles. On the contrary, in the case of the sectional travel speeds of intra-city bus, it was analyzed that they were less accurate than the DSRC sectional travel speeds. In the future, it will be necessary to improve BIS process and make use of the travel information on intra-city buses collected in real time to find various ways of applying it as traffic information.

Study on the Classification Methodology for DSRC Travel Speed Patterns Using Decision Trees (의사결정나무 기법을 적용한 DSRC 통행속도패턴 분류방안)

  • Lee, Minha;Lee, Sang-Soo;Namkoong, Seong;Choi, Keechoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper, travel speed patterns were deducted based on historical DSRC travel speed data using Decision Tree technique to improve availability of the massive amount of historical data. These patterns were designed to reflect spatio-temporal vicissitudes in reality by generating pattern units classified by months, time of day, and highway sections. The study area was from Seoul TG to Ansung IC sections on Gyung-bu highway where high peak time of day frequently occurs in South Korea. Decision Tree technique was applied to categorize travel speed according to day of week. As a result, five different pattern groups were generated: (Mon)(Tue Wed Thu)(Fri)(Sat)(Sun). Statistical verification was conducted to prove the validity of patterns on nine different highway sections, and the accuracy of fitting was found to be 93%. To reduce travel pattern errors against individual travel speed data, inclusion of four additional variables were also tested. Among those variables, 'traffic condition on previous month' variable improved the pattern grouping accuracy by reducing 50% of speed variance in the decision tree model developed.

Forecasting of Motorway Path Travel Time by Using DSRC and TCS Information (DSRC와 TCS 정보를 이용한 고속도로 경로통행시간 예측)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1033-1041
    • /
    • 2017
  • Path travel time based on departure time (PTTDP) is key information in advanced traveler information systems (ATIS). Despite the necessity, forecasting PTTDP is still one of challenges which should be successfully conquered in the forecasting area of intelligent transportation systems (ITS). To address this problem effectively, a methodology to dynamically predict PTTDP between motorway interchanges is proposed in this paper. The method was developed based on the relationships between traffic demands at motorway tollgates and PTTDPs between TGs in the motorway network. Two different data were used as the input of the model: traffic demand data and path travel time data are collected by toll collection system (TCS) and dedicated short range communication (DSRC), respectively. The proposed model was developed based on k-nearest neighbor, one of data mining techniques, in order for the real applications of motorway information systems. In a feasible test with real-world data, the proposed method performed effectively by means of prediction reliability and computational running time to the level of real application of current ATIS.

A City Path Travel Time Estimation Method Using ATMS Travel Time and Pattern Data (ATMS 교통정보와 패턴데이터를 이용한 도시부도로 통행시간 추정방안 연구)

  • KIM, Sang Bum;KIM, Chil Hyun;YOO, Byung Young;KWON, Yong Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2015
  • ATMS calculates section travel time using two-way communication system called DSRC(Dedicated Short Range Communications) which collects data of RSE (Road Side Equipment) and Hi-pass OBU (On-board Unit). Travel time estimation in urban area involves uncertainty due to the interrupted flow. This study not only analyzed real-time data but also considered pattern data. Baek-Je-Ro street in Jeon-Ju city was selected as a test site. Existing algorithm was utilized for data filtering and pattern data building. Analysis results repoted that travel time estimation with 20% of real-time data and 80% of pattern data mixture gave minimum average difference of 37.5 seconds compare to the real travel time at the 5% significant level. Results of this study recommend usage of intermixture between real time data and pattern data to minimize error for travel time estimation in urban area.