• Title/Summary/Keyword: DSP-based Control Scheme

Search Result 99, Processing Time 0.02 seconds

Design and DSP-based Implementation of Robust Nonlinear Speed Control of Permanent Magnet Synchronous Motor (영구자석 동기전동기의 강인 비선형 속도제어기의 설계 및 DSP에 기반한 구현)

  • 백인철;김경화;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • A design and DSP-based implementation of robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) under the unknown parameter variations and speed measurement error is presented. The model reference adaptive system(MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the MIT rule. For the disturbances or quickly varying parameters, a quasilinearized and decoupled model which includes the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller which employs Proportional plus Derivative(PD) control. To show the validity of the proposed scheme, simulations and DSP-based experimental works are carried out and compared with the conventional control scheme.

DSP-based Current Programmed Control of Three Phase PWM AC-AC Boost Converter (3상 PWM AC-AC 부스트 컨버터의 DSP 기반 전류 프로그램 제어)

  • Choi Nam-Sup;Li Yulong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order, inherent current protection and robust output. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation and to establish some important characteristic equations for control purpose. The experiment results show the validity of the proposed scheme.

Synthesis and Experimental Implementation of DSP Based Backstepping Control of Positioning Systems

  • Chang, Jie;Tan, Yaolong
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • Novel nonlinear backstepping control with integrated adaptive control function is developed for high-performance positioning control systems. The proposed schemes are synthesized by a systematic approach and implemented based on a modern low-cost DSP controller, TMS320C32. A baseline backstepping control scheme is derived first, and is then extended to include a nonlinear adaptive control against the system parameter changes and load variations. The backstepping control utilizes Lyapunov function to guarantee the convergence of the position tracking error. The final control algorithm is a convenient in the implementation of a practical 32-bit DSP controller. The new control system can achieve superior performance over the conventional nested PI controllers, with improved position tracking, control bandwidth, and robustness against external disturbances, which is demonstrated by experimental results.

DSP Based Control of Interleaved Boost Converter

  • Sudhakarababu C.;Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.180-189
    • /
    • 2005
  • In this paper a DSP based control scheme for the interleaved boost converter is presented. The mathematical model for the interleaved boost converter operating in a continuous inductor current mode is developed. A state-space averaging technique is used for modeling the converter system. A fixed frequency sliding mode controller is designed to ensure current distribution between the two converter modules and to achieve the load voltage regulation simultaneously. Necessary and sufficient conditions, using variable structure theory, are derived for the sliding mode to exist. The range of sliding mode controller coefficients is also determined. The designed controller capability, load distribution among the individual boost cells and load voltage regulation against source and load disturbances, are demonstrated through PSIM simulation results. A real-time controller based on ADMC401 DSP is developed. Experimental results are provided to validate the proposed control scheme.

An Adoptive Current Control Scheme of an AC Servo Motor for Performance Improvement of a Servo Drive (서보 드라이브 성능 향상을 위한 AC 서보 전동기의 적응형 전류 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.96-103
    • /
    • 2006
  • An MRAC-based adaptive current control scheme of an AC servo motor is presented for the performance improvement of a servo drive. Although the predictive current control is known to give ideal transient and steady-state responses, its steady-state response my be degraded under motor parameter variations. To overcome such a limitation, the disturbances caused by the parameter variations will be estimated by using an MRAC technique and compensated by a feedforward control. The proposed scheme does not require the measurement of the phase voltage unlike the conventional disturbance estimation scheme using observer. The asymptotic stability is proved. The proposed scheme is implemented using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

Implementation of Random Carrier-Frequency Modulation Scheme for a DSP based PWM Inverter for Acoustic Noise Reduction of Induction Motors (유도전동기의 소음저감을 위한 DSP기반 PWM인버터의 랜덤 캐리어 주파수 변조기법의 구현)

  • 정영국;나석환;임영철;정성기
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.608-615
    • /
    • 2003
  • This paper describes an implementation of a DSP (Digital Signal Processor) controlled random carrier frequency modulation for the PWM inverter for acoustic noise reduction of induction motors. Real-time generation of the random variable and RPWM(Random PWM) along with the speed control was achieved by DSP TMS320C31. The experimental results show that the voltage and current harmonics are spread to a wide band area and the power spectrum of the acoustic switching noise was spread to create a more appealing, less annoying sound. Also, the speed response of the implemented method and the conventional method is nearly similar to each other from the viewpoint of the v/f constant control.

DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor Using Adaptive and Sliding Mode Control Techniques

  • Baik, In-Cheol;Kyeong-Hwa;Kwan-Yuhl;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.251-260
    • /
    • 1998
  • A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) which is robust to unknown parameter variations and speed measurement error is presented. The model reference adaptive system(MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the Lyapunov stability theory. For the disturbances or quickly varying parameters. a quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme.

  • PDF

DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor

  • Baik, In-Cheol;Kim, Kyeong-Hwa;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.94-102
    • /
    • 1998
  • A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme.

  • PDF

Real-Time Digital Control of PWM Inverter Empolyed DSP (DSP에 의한 PWM 인버터의 Real-Time Digital 제어)

  • Park, Ga-Woo;Min, Wan-Ki;Choi, Jae-Ho;Choi, Sung-Ryool
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.724-727
    • /
    • 1993
  • This paper is presented real-time digital control techniques of the PWM inverter for UPS. This proposed system is based on instantaneous digital control scheme which is empolyed double dead beat control and prediction method. Especially, to supply the load current from the inverter without the computation delay, the predictive methods are used to generate the load current signal. From the simulation and experimental results, it is shown that presented scheme has good performance such as very low THD of the output voltage, and good dynamic response under the nonlinear load. The experimental implementation of the system is estabilished by using the TMS320C25 DSP.

  • PDF

Development of robot control system using DSP (DSP를 이용한 로보트 제어시스템 개발)

  • Lee, Bo-Hee;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.50-57
    • /
    • 1995
  • In this paper, the design and the implementation of the controller for an articulate robot, which is developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies structures by the time-division control with TMS320C31 DSP chip. The method of control is based on the fuzzy-compensated PID control with scale factor, which compensates for the influence of load variation resulting from the various postures of the robot with conventional PID scheme. The application of the proposed controller to the robot system with DC servo-motors shows some excellent control capabilities. Also, the response characteristics of system for the various trajectory commands verify the superiority of the controller.

  • PDF