• Title/Summary/Keyword: DSP processor

Search Result 721, Processing Time 0.023 seconds

Real-Time Image Processing System for PDP Pattern Inspection with Line Scan Camera (PDP 패턴검사를 위한 실시간 영상처리시스템 개발)

  • Cho Seog-Bin;Baek Gyeoung-Hun;Yi Un-Kun;Nam Ki-Gon;Baek Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.17-24
    • /
    • 2005
  • Various defects are found in PDP manufacturing process. Detecting these defects early and reprocessing them is an important factor that reduces the cost of production. In this paper, the image processing system for the PDP pattern inspection is designed and implemented using the high performance and accuracy CCD line scan camera. For the preprocessing of the high speed line image data, the Image Processing Part (IPP) is designed and implemented using high performance DSP, FIFO and FPGA. Also, the Data Management and System Control Part (DMSCP) are implemented using ARM processor to control many IPP and cameras and to provide remote users with processed data. For evaluating implemented system, experiment environment which has an area camera for reviewing and moving shelf is made. Experimental results showed that proposed system was quite successful.

Development of Variable Speed Digital Control System for SRM using Simple Position Detector (간단한 위치검출기를 이용한 SRM 가변속 디지털 제어시스템 개발)

  • 천동진;정도영;이상호;이봉섭;박영록
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.202-208
    • /
    • 2001
  • A Switched Reluctance Motor(SRM) has double salient poles structure and the phase windings are wound in stator. SRM hase more simple structure that of other motor, thus manufacture cost is low, mechanically strong, reliable to a poor environment such as high temperature, and maintenance cost is low because of brushless. SRM needs position detector to get rotator position information for phase excitation and tachometer or encoder for constant speed operation. But, this paper doesn\`s use an encoder of high cost for velocity measurement of rotator. Instead of it, the algorithm for position detection and velocity estimation from simple slotted disk has been proposed and developed. To implement variable speed digital control system with velocity estimation algorithm, the TMS320F240-20MIPS fixed point arithmetic processor of TI corporation is used. The experimental results of the developing system are enable to control speed with wide range, not only single pulse, hard chopping mode and soft chopping, ut also variable speed control, and advance angle control.

  • PDF

A Simplified Synchronous Reference Frame for Indirect Current Controlled Three-level Inverter-based Shunt Active Power Filters

  • Hoon, Yap;Radzi, Mohd Amran Mohd;Hassan, Mohd Khair;Mailah, Nashiren Farzilah;Wahab, Noor Izzri Abdul
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1964-1980
    • /
    • 2016
  • This paper presents a new simplified harmonics extraction algorithm based on the synchronous reference frame (SRF) for an indirect current controlled (ICC) three-level neutral point diode clamped (NPC) inverter-based shunt active power filter (SAPF). The shunt APF is widely accepted as one of the most effective current harmonics mitigation tools due to its superior adaptability in dynamic state conditions. In its controller, the SRF algorithm which is derived based on the direct-quadrature (DQ) theory has played a significant role as a harmonics extraction algorithm due to its simple implementation features. However, it suffers from significant delays due to its dependency on a numerical filter and unnecessary computation workloads. Moreover, the algorithm is mostly implemented for the direct current controlled (DCC) based SAPF which operates based on a non-sinusoidal reference current. This degrades the mitigation performances since the DCC based operation does not possess exact information on the actual source current which suffers from switching ripples problems. Therefore, three major improvements are introduced which include the development of a mathematical based fundamental component identifier to replace the numerical filter, the removal of redundant features, and the generation of a sinusoidal reference current. The proposed algorithm is developed and evaluated in MATLAB / Simulink. A laboratory prototype utilizing a TMS320F28335 digital signal processor (DSP) is also implemented to validate effectiveness of the proposed algorithm. Both simulation and experimental results are presented. They show significant improvements in terms of total harmonic distortion (THD) and dynamic response when compared to a conventional SRF algorithm.

A Study on The Development and Function Test of Digital Transformer Protection Relay Using The Induced Voltage (유기전압비를 이용한 디지털형 변압기 보호계전기 개발 및 성능시험에 관한 연구)

  • Jung, Sung-Kyo;Lee, Jae-Kyung;Kim, Han-Do;Choi, Dae-Gil;Kang, Yong-Chul;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.216-218
    • /
    • 2001
  • The transformer role is very important in power system operation and control; also its price is very expensive. Therefore many kinds of the efforts for transformer protection have been executed. So for as, current differential relay(87) has been mainly used for transformer protection. But current differential relaying method has several troubles as followings. Differential current can be occurred by transformers inrush current between winding1 and winding2 of transformer when transformer is initially energized. Also harmonic restrained element used in current differential relaying method is one of the causes of relays mal-operation because recently harmonics in power system gradually increase by power switching devices(SVC, FACTS, DSC, etc). Therefore many kinds of effort have been executed to solve the trouble of current differential relay and one of them is method using ratio of increment of flux linkages(RIFL) of the primary and secondary windings. This paper introduces a novel protective relay for power transformers using RIFL of the primary and secondary windings. Novel protective relay successfully discriminates between transformer internal faults and normal operation conditions including inrush and this paper includes real time test results using RTDS(Real Time Digital Simulator) for novel protective relay. A novel protective relay was designed using the TMS320C32 digital signal processor and consisted of DSP module. A/D converter module, DI/DO module, MMI interface module and LCD display module and developed by Xelpower co., Ltd.

  • PDF

Implementation of a Speech Recognition System for a Car Navigation System (차량 항법용 음성인식 시스템의 구현)

  • Lee, Tae-Han;Yang, Tae-Young;Park, Sang-Taick;Lee, Chung-Yong;Youn, Dae-Hee;Cha, Il-Hwan
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.103-112
    • /
    • 1999
  • In this paper, a speaker-independent isolated world recognition system for a car navigation system is implemented using a general digital signal processor. This paper presents a method combining SNR normalization with RAS as a noise processing method. The semi-continuous hidden markov model is adopted and TMS320C31 is used in implementing the real-time system. Recognition word set is composed of 69 command words for a car navigation system. Experimental results showed that the recognition performance has a maximum of 93.62% in case of a combination of SNR normalization and spectral subtraction, and the performance improvement rate of the system is 3.69%, Presented noise processing method showed good speech recognition performance in 5dB SNR in car environment.

  • PDF

Bidirectional Charging/Discharging Digital Control System for Eco-friendly Capacitor Energy Storage Device Implemented by TMS320F28335 chip (TMS320F28335로 구현한 친환경 커패시터 전력저장장치의 양방향 디지털 제어 충/방전 시스템)

  • Lee, Jung-Im;Lee, Jong-Hyun;Jung, An-Yoel;Lee, Choon-Ho;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • Recently, as the demand of the environmental-friendly energy storage system such as an electric double-layer condenser increases, that of the bidirectional charger/discharger for the systems also increases. However, when charging/discharging mode-change occurs, the charger/discharger employing a bi-directional DC-DC converter with a commercialized analog controller has a complex circuit scheme, and a poor transient response. On the other hand, if a single digital controller is used for the bi-directional mode, the system performances can be improved by application of an advanced power-processing algorithm. In the paper, an environmental-friendly power storage systems including an Electric Double Layer Capacitor(EDLC) banks were developed with a bi-directional buck-boost converter and a digital signal processor (TMS320F28335). A simulation test-bed was realized and tested by MATLAB Simulink, and the hardware experiment was performed which shows that the dynamic response was improved such as the simulation results.

A Speed Control of Switched Reluctance Motor using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 박지호;김연충;원충연;김창림;최경호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.109-119
    • /
    • 1999
  • Switched Reluctance Motor(SRM) have been expanding gradually their awlications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. In this paper neural network theory is used to detemrine fuzzy-neural network controller's membership ftmctions and fuzzy rules. In addition neural network emulator is used to emulate forward dynamics of SRM and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. The backpropagated error of emulator offers the path which reforms the fuzzy-neural network controller's mmbership ftmctions and fuzzy rules. 32bit Digital Signal Processor(TMS320C31) was used to achieve the high speed control and to realize the fuzzy-neural control algorithm. Simulation and experimental results show that in the case of load variation the proposed control rrethcd was superior to a conventional rrethod in the respect of speed response.sponse.

  • PDF

A Design and Implementation of the Real-Time VoIP Terminal System Based on Linux (리눅스 기반 실시간 처리 VoIP 단말기 시스템의 설계 및 구현)

  • Lee, Myeong-Geun;Lee, Sang-Jeong;Seo, Jeong-Min;Im, Jae-Yong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.345-352
    • /
    • 2001
  • In this paper, a VoIP (Voice on Internet Protocol) terminal system, which can process voice in real time based on Linux, is designed and implemented. The hardware of it is designed using a i486 processor and a DSP codec chip which encodes and decodes voice data in real time. As an operating system, RTLinux, which is a real-time operating system based on Linux, is ported to manage real-time voice processing. The voice processing module of the system uses G.723.1 voice codec of ITU-T standard. It transfers voice data within 30ms to assure good voice quality. In order to satisfy the real time requirements and QoS (Quality-of-Service) for the voice data, the real-time voice processing device driver is designed and implemented. To verify the system, the chatting application program is developed and tested for QoS of the system.

  • PDF

The Modified Direct Torque Control System for Five-Phase Induction Motor Drives (5상 유도전동기 구동을 위한 수정된 직접 토크제어 시스템)

  • Kim, Min-Huei;Kim, Nom-Hun;Baik, Won-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.138-147
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) system for five-phase squirrel-cage induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase 1M drives present unique characteristics. Also five-phase motor drives possess many other advantages compared with the traditional three-phase motor drive system, such as reducing an amplitude of torque pulsation and increasing the reliability. The DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter. However, five-phase motor has structural drawback of 3rd space-harmonics current component, it is necessary to controlled 3rd harmonic current. So to control 3rd harmonic current and enhance dynamic characteristics of five-phase squirrel-cage IM drive, modified DTC method should be demanded. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is presented. A more precise flux and torque control algorithm for the drives can be suggested and explained For presenting the superior performance of the proposed direct torque control, experimental results are presented using a 32-[bit] fixed point TMS320F2812 digital signal processor with 2.2[kW] induction motor.

Highly Reliable Fault Detection and Classification Algorithm for Induction Motors (유도전동기를 위한 고 신뢰성 고장 검출 및 분류 알고리즘 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Jung, Yong-Bum;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.147-156
    • /
    • 2011
  • This paper proposes a 3-stage (preprocessing, feature extraction, and classification) fault detection and classification algorithm for induction motors. In the first stage, a low-pass filter is used to remove noise components in the fault signal. In the second stage, a discrete cosine transform (DCT) and a statistical method are used to extract features of the fault signal. Finally, a back propagation neural network (BPNN) method is applied to classify the fault signal. To evaluate the performance of the proposed algorithm, we used one second long normal/abnormal vibration signals of an induction motor sampled at 8kHz. Experimental results showed that the proposed algorithm achieves about 100% accuracy in fault classification, and it provides 50% improved accuracy when compared to the existing fault detection algorithm using a cross-covariance method. In a real-world data acquisition environment, unnecessary noise components are usually included to the real signal. Thus, we conducted an additional simulation to evaluate how well the proposed algorithm classifies the fault signals in a circumstance where a white Gaussian noise is inserted into the fault signals. The simulation results showed that the proposed algorithm achieves over 98% accuracy in fault classification. Moreover, we developed a testbed system including a TI's DSP (digital signal processor) to implement and verify the functionality of the proposed algorithm.