• 제목/요약/키워드: DS(Directional Solidification)

검색결과 12건 처리시간 0.023초

일방향 응고법에 의한 다결정 실리콘의 야금학적 정련 (Metallurgical Refinement of Multicrystalline Silicon by Directional Solidification)

  • 장은수;박동호;류태우;문병문
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • The solar energy is dramatically increasing as the alternative energy source and the silicon(Si) solar cell are used the most. In this study, the improved process and equipment for the metallurgical refinement of multicrystalline Si were evaluated for the inexpensive solar cell. The planar plane and columnar dendrite aheadof the liquid-solid interface position caused the superior segregation of impurities from the Si. The solidification rate and thermal gradient determined the shape of dendrite in solidified Si matrix solidified by the directional solidification(DS) method. To simulate this equipment, the commercial software, PROCAST, was used to solve the solidification rate and thermal gradient. Si was vertically solidified by the DS system with Stober process and up-graded metallurgical grade or metallurgical grade Si was used as the feedstock. The inductively coupled plasma mass spectrometry (ICP) was used to measure the concentration of impurities in the refined Si ingot. According to the result of ICP and simulation, the high thermal gradient between the two phases wasable to increase the solidification rate under the identical level of refinement. Also, the separating heating zone equipped with the melting and solidification zone was effective to maintain the high thermal gradient during the solidification.

  • PDF

Temperature Gradient Estimation of Floating Zone Furnace by Mean Lamellar Spacing Measurement in DS-processed TiAl Alloys

  • Jung, I.S.;Park, Jong-Moon;Wee, D.M.;Oh, Myung-Hoon
    • 열처리공학회지
    • /
    • 제28권2호
    • /
    • pp.82-86
    • /
    • 2015
  • In this study, the temperature gradient of a floating zone (FZ) apparatus, which is very difficult to directly measure, could be estimated by using the relationships between the lamellar spacing of directionally solidified TiAl alloys and the solidification rate, It was found that the calculated temperature gradient of the FZ apparatus was much higher, and almost ten times higher than that of a Bridgman type directional solidification apparatus.

니켈계 초내열합금 CM247LC의 일방향응고 시 미세조직 형성거동 분석 (Analysis of Microstructural Evolution During Directional Solidification of Ni-Base Superalloy CM247LC)

  • 서성문;정희원;윤대원;안영근;이재현;유영수
    • 한국주조공학회지
    • /
    • 제33권5호
    • /
    • pp.193-203
    • /
    • 2013
  • The Ni-base superalloy CM247LC was directionally solidified (DS) using the Bridgman-type furnace to understand the effect of the chill plate on the microstructural evolution, such as dendrite arm spacing, microporosity, and MC-type carbide. The DS process was also modeled by the PROCAST to predict the solidification rate, thermal gradient, and resultant cooling rate in the entire length of the DS specimen. Due to the quenching effects of chill plate, four distinct areas were found to form in the specimen, in which the solidification rate was changed, during DS at a given withdrawal rate of 0.083 mm/s. Among the microstructural features investigated, the dendrite arm spacings and average size of the MC-type carbide near the chill plate were found to be influenced by the quenching effect of the chill plate. However, no significant influence was found on the size and volume fraction of microporosity, and the volume fraction of the MC-type carbide. The relationship between the microstructural features and the solidification variables was also analyzed and discussed on the basis of a combination of experimental and modeling results.

Ni-Al 합금의 일방향 응고 거동에 미치는 Re 및 응고속도의 영향 (The Effect of Re addition and Solidification Rate on the Directional Solidification Behavior of Ni-Al Alloy)

  • 이만길;유영수;조창용;이재현
    • 한국주조공학회지
    • /
    • 제27권6호
    • /
    • pp.243-249
    • /
    • 2007
  • The effect of Re addition and solidification rate on the directional solidification behavior of Ni-Al model alloy has been investigated. Directional solidification (DS) were carried out using the modified Bridgman furnace with various solidification rates. The solid/liquid interface during directional solidification was preserved by quenching the specimen after the desired volume fraction of original liquid was solidified. The equilibrium partition coefficients of Al and Re Were estimated by measuring the compositions at the quenched solid/liquid interface. Then, the effect of Re addition on the elemental segregation behavior was carefully analyzed. The differential scanning calorimetry results showed that the Re addition results in increased ${\gamma}'$ solvus and freezing range of the alloy. It was also shown that the primary dendrite arm spacing gradually decreases with increasing the Re content, while the secondary dendrite arm spacing appears to be independent on the Re content. The compositional analyses clearly revealed that the segregation of Al increased with increasing the Re content and solidification rate, while that of Re was found to be independent on the solidification rate in the range of $10{\sim}100{\mu}m/s$ due to its sluggish diffusion rate in the Ni solid solution.

TiAl-Nb 합금의 고온상변태와 일방향응고에 관한 연구 (Study on High Temperature Phase Transformation and Directional Solidification of TiAl-Nb Alloy)

  • 박종문;장호승;김성웅;김승언;손지하;오명훈
    • 열처리공학회지
    • /
    • 제29권5호
    • /
    • pp.227-233
    • /
    • 2016
  • Phase transformation phenomenon at high temperature was investigated by using designed TiAl-Nb alloys with addition of the ${\beta}$ stabilizer. Examination of dendritic morphologies in arc-melted button ingot could reveal the crystallography of the primary solidification phase. It was found that the addition of ${\beta}$ stabilizer(Nb) shifted the high temperature region of the binary Ti-Al phase diagram to the high Al composition side so that ${\beta}$ phase forms as a primary crystal even at higher Al composition compared with the binary Ti-Al system. The ${\beta}$ was found to be the primary solidification phase for alloys with Al content less than about 52 at.%. The composition of ${\beta}$ solidification in Ti-Al-Nb ternary system could be determined from the partial liquidus projection which was constructed by observing the microstructure of arc-melted buttons. The Ti-46Al-(6, 8)Nb composition was selected for ${\beta}$ solidification and the directional solidification was performed by a floating zone-type DS apparatus at the growth rate 30 mm/hr respectively.

열처리조건에 따른 Ni기지 초합금 용접부의 기계적 특성 (Mechanical Properties for Welding Part on Ni Base Superalloy Material According to Heat Treatment Parameters)

  • 양성호;박상열;최희숙;고원;채나현;김문영
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.525-531
    • /
    • 2007
  • The operating temperature has been increased to improve the efficiency of gas turbine. The most advanced Gas turbine is operated at above $1,500^{\circ}C$. Improvement in material and cooling method permit hot gas path component to run at increased temperature. But, the repair of blades which are developed with advanced manufacture technique is difficult to use normal welding. Most of gas turbine blades are made of precipitation harden nickel base superalloy, which is very hard to weld. Therefore, the employment of welding filler on blade is solid solution nickel base superalloy(Hastelloy X, Inconel 617). In this study, Tensile test in high temperature was conducted on welded GTD111DS with GTD111 to evaluate effect of variation of pre, post treatment. The result of this study showed that the specimen was treated with optimum pre and post treatment(preweld HT($1200^{\circ}C$), Post treatment($1100^{\circ}C$ HIP, $1200^{\circ}C$ + $1100^{\circ}C$ + $800^{\circ}C$ HT) is mush superior.

Fe-Aluminide합금의 미세조직과 기계적 특성에 관한 연구 (A Study on the Microstructure and Mechanical properties of Fe Aluminide alloys)

  • 조종춘;이도인;이성재;최병학;김학민
    • 연구논문집
    • /
    • 통권22호
    • /
    • pp.115-125
    • /
    • 1992
  • Mechanical properties and microstructure were investigated on vacuum induction melted $Fe_3A1$base alloys of $DO_3$ structure. Specal emphasis were put on the effect of alloy chemistry, grain size and process(rolling, directional solidification) on mechanical properties of Fe-22.5-39at.%Al at elevated temperature between room temperature and $800^{\circ}C$. grain size of as-cast alloys is refined by rolling from 1mm to $80\mum$. Tensile strength of Fe-24.lat.%AI was about 404MPa at the critical ordering temperature, and the fracture strain of the alloy was 1-2% at room temperature. An inverse temperature dependence of the strength is noticed as-cast $Fe_3A1$. The presence of Cr and Zr do not affect the room temperature ductility and high temperature strength. Fracture strain of directionally solidified(DS) $Fe_3A1$ is about 1%at room temperature, but is about 60%at. $T_C$(550^{\circ}C)$. Tensile strength of DS alloy is lower than that of as-cast alloy at $530^{\circ}C$ and $430^{\circ}C$. Failure mode at room temperature varies from transgranular fracture to intergranular fracture with the addition of Al. the failure mode also varies from mixed(transgranular+ intergranular) mode between room temperature and $500^{\circ}C$ to intergranular mode above $550^{\circ}C$

  • PDF

Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측 (Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature)

  • 김진열;윤동현;김재훈;배시연;장성용;장성호
    • 대한기계학회논문집A
    • /
    • 제41권8호
    • /
    • pp.765-770
    • /
    • 2017
  • Ni기 초내열합금인 GTD111 DS는 가스터빈 블레이드에 사용된다. 본 논문에서는 실제 운전조건과 유사한 조건을 설정하여 GTD111 DS의 저주기 피로시험을 실시하였다 상온, $760^{\circ}C$, $870^{\circ}C$의 온도범위와 다양한 변형률에서 저주기 피로시험을 수행하였다. 실험결과 총 변형률이 증가함에 따라 피로수명은 감소하였다. 상온 및 $760^{\circ}C$에서는 주기적 경화반응이 나타났으며 $870^{\circ}C$에서는 주기적 연화반응이 나타났다. $870^{\circ}C$에서 응력완화 현상은 유지시간에 따른 크리프의 영향으로 나타났다. 피로수명과 총 변형률의 관계는 Coffin-Manson 식을 통해 얻었다. 파단면은 SEM을 통해 초기균열 및 피로진전지역을 관찰하였다.