• 제목/요약/키워드: DRONE

Search Result 1,339, Processing Time 0.033 seconds

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.

Simulation Modeling for Performance Analysis of Drone-type Base Station on the Millimeter-wave Frequency Band (밀리미터파 대역에서의 드론형 기지국 성능분석을 위한 시뮬레이션 모델링 연구)

  • Jeong, Min-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.825-836
    • /
    • 2019
  • The drone-type base station will be an optimal platform as a way of information sharing for efficient operation of the military force due to their high network flexibility. It is expected that the characteristics of the drone-type base station which would freely adjust the altitude can be used to offset the propagation attenuation characteristics of the millimeter-wave frequency band by securing the stable Line of Sight. In this paper, we proposed a framework for evaluation drone-type base station that can be utilized as a future military communication network by performing modeling for performance analysis that can reflect various factors.

A Study on the Development Status and Economic Impacts of Drone Taxis (드론택시의 개발현황 및 경제적 파급효과 분석)

  • Choi, Ja-Seong;Hwang, Ho-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.132-140
    • /
    • 2020
  • The development status was studied to predict the concept of how drone taxis would be presented in daily life. the results of the analysis on traffic effects of drone taxis showed that they would be an innovative transportation option that could reach a distance of 60km, which would typically take an hour by car, within twenty minutes. Moreover, the economic analysis of existing aircraft development was limited to production (development investment) of the input budget. However, since the drone taxi is a new transportation system, an overall traffic platform, such as its own terminals, would need to be established. So, the production inducement effect was analyzed by dividing input budget into three factors; production, infrastructure, and service. The results indicate this to be an innovative project expected to have an economic ripple effect and reach a total of 24 trillion won after an investment of 13 trillion won (production + infrastructure + service) in Korea from 2020 to 2040.

Detection of Ecosystem Distribution Plants using Drone Hyperspectral Spectrum and Spectral Angle Mapper (드론 초분광 스펙트럼과 분광각매퍼를 적용한 생태계교란식물 탐지)

  • Kim, Yong-Suk
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.173-184
    • /
    • 2021
  • Ecological disturbance plants distributed throughout the country are causing a lot of damage to us directly or indirectly in terms of ecology, economy and health. These plants are not easy to manage and remove because they have a strong fertility, and it is very difficult to express them quantitatively. In this study, drone hyperspectral sensor data and Field spectroradiometer were acquired around the experimental area. In order to secure the quality accuracy of the drone hyperspectral image, GPS survey was performed, and a location accuracy of about 17cm was secured. Spectroscopic libraries were constructed for 7 kinds of plants in the experimental area using a Field spectroradiometer, and drone hyperspectral sensors were acquired in August and October, respectively. Spectral data for each plant were calculated from the acquired hyperspectral data, and spectral angles of 0.08 to 0.36 were derived. In most cases, good values of less than 0.5 were obtained, and Ambrosia trifida and Lactuca scariola, which are common in the experimental area, were extracted. As a result, it was found that about 29.6% of Ambrosia trifida and 31.5% of Lactuca scariola spread in October than in August. In the future, it is expected that better results can be obtained for the detection of ecosystem distribution plants if standardized indicators are calculated by constructing a precise spectral angle standard library based on more data.

Deeper SSD: Simultaneous Up-sampling and Down-sampling for Drone Detection

  • Sun, Han;Geng, Wen;Shen, Jiaquan;Liu, Ningzhong;Liang, Dong;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4795-4815
    • /
    • 2020
  • Drone detection can be considered as a specific sort of small object detection, which has always been a challenge because of its small size and few features. For improving the detection rate of drones, we design a Deeper SSD network, which uses large-scale input image and deeper convolutional network to obtain more features that benefit small object classification. At the same time, in order to improve object classification performance, we implemented the up-sampling modules to increase the number of features for the low-level feature map. In addition, in order to improve object location performance, we adopted the down-sampling modules so that the context information can be used by the high-level feature map directly. Our proposed Deeper SSD and its variants are successfully applied to the self-designed drone datasets. Our experiments demonstrate the effectiveness of the Deeper SSD and its variants, which are useful to small drone's detection and recognition. These proposed methods can also detect small and large objects simultaneously.

Improved Drone Delivery System Through User Authentication and Mission Automation Using EdgeCPS (EdgeCPS를 활용한 사용자 인증 및 임무 자동화를 통한 드론 배송 시스템 개선)

  • MinGuen Cho;MinKi Beak;EuTeum Choi;DongBeom Ko;SungJoo Kang;SeongJin Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.141-150
    • /
    • 2023
  • Currently, various companies are actively participating in research and development of drone delivery services. Existing studies do not comprehensively provide integrated functions for future drone delivery services such as mission automation, customer verification, and overcoming performance limitations, which can lead to high manpower demand, reduced user service trust, and potentially overloading low-end devices. Therefore, this study proposes a drone mission automation system (DMAS) using EdgeCPS technology to provide the three aforementioned functions in an integrated manner. Real-world experiments were conducted to evaluate the proposed system, demonstrating that the DMAS components operate according to the specified roles in the delivery scenario. In addition, the system achieved user verification with a similarity of more than 90% in the process of receiving the product, and verified a faster inference speed and a lower resource share than the existing method.

A Study on Hybrid Power Generation System for Hour-Flight Drone (시간체공 드론 적용을 위한 하이브리드 동력시스템 연구)

  • Myung-Wook Choi;Seung-Jin Yang;Jung-Min Lim;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.269-276
    • /
    • 2023
  • In this research works, we propose a hybrid power generation system for drone capable of staying in the air for more than 1 hour. This power system converts the alternating current generated by the generator into direct current through a diode bridge circuit to charge the battery and uses a battery system having separated cells to obtain high controllability of the power system. The fuel efficiency and the power output for individual load were analyzed, and also the performance of a selected generator was studied in this paper. The drone which is equipped with the proposed hybrid power generation system calculated 0.82 ratio for weight vs power output, and flight time of drone showed 4,179 seconds.

Exploratory Study on the Process and Checklist Items for Construction Safety Inspection Utilizing Drones

  • Jung, Jieun;Baek, Mina;Yu, Chaeyeon;Lee, Donghoon;Kim, Sungjin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.327-336
    • /
    • 2023
  • The focus of this research was to devise a conceptual methodology for drone usage and to assess the viability of safety checklist items specific to drone application in safety oversight. The appraisal was grounded in a focus group interview involving professionals from construction management and safety fields. The proposed process was segmented into four stages: 1) pre-flight phase for flight plan development, 2) drone flight phase for safety condition inspection utilizing checklist items, 3) post-flight phase for visual asset analysis, and 4) documentation and management phase. Furthermore, the research scrutinized the applicability of 32 distinct safety checklist items for drone operations. The primary aim of this investigation was to probe the possible deployment of drones as part of construction safety inspections at work sites. However, it bears mentioning that subsequent research should strive to gather a more extensive sample size through questionnaire surveys, thereby facilitating quantitative analysis. Administering such surveys would yield more comprehensive data compared to a focus group interview, which was constrained by a limited participant count. In summation, this study lays a foundational groundwork for understanding the potential advantages and challenges associated with integrating drones into construction safety management.

Development of Animal Tracking Method Based on Edge Computing for Harmful Animal Repellent System. (엣지컴퓨팅 기반 유해조수 퇴치 드론의 동물 추적기법 개발)

  • Lee, Seul;Kim, Jun-tae;Lee, Sang-Min;Cho, Soon-jae;Jeong, Seo-hoon;Kim, Hyung Hoon;Shim, Hyun-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.224-227
    • /
    • 2020
  • 엣지컴퓨팅 기반 유해조수 퇴치 Drone의 유해조수 추적 기술은 Doppler Sensor를 이용해 사유지에 침입한 유해조수를 인식 후 사용자에게 위험 요소에 대한 알림 서비스를 제공한다. 이후 사용자는 Drone의 Camera와 전용 애플리케이션을 이용해 경작지를 실시간으로 보며 Drone을 조종한다. Camera는 Tensor Flow Object Detection Deep Learning을 적용하여 유해조수를 학습 및 파악, 추적한다. 이후 Drone은 Speaker와 Neo Pixel LED Ring을 이용해 유해조수의 시각과 청각을 자극해 도망을 유도하며 퇴치한다. Tensor Flow object detection을 핵심으로 Drone에 접목했고 이를 위해 전용 애플리케이션을 개발했다.

Development of Ground Antenna Tracker for Drones Based on Satellite System (위성시스템 기반 드론용 지상 안테나 트래커 개발)

  • Se-jun Kim;Jong-pil Choi;Dong-huyn Oh;Da-jin-sol Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.740-745
    • /
    • 2023
  • This study proposes the development of an antenna tracker system using a satellite system to stabilize the communication status of drones and extend the communication distance. The location information of the drone and the ground station was used to maximize communication gain in the general fixed antenna method between the ground station and the drone. We developed a tracker system that can automatically and continuously aim the ground station's antenna at the drone. It is expected that the use of antenna trackers will improve the stabilization of communication conditions and expand the communication distance, thereby leading to the advancement of the drone industry.