• Title/Summary/Keyword: DRAMs

Search Result 64, Processing Time 0.021 seconds

LS-MOCVD OF BARIUM STRONTIUM TITANATE THIN FILMS USING NOVEL PRECURSORS

  • Kwon, Hyun-Goo;Oh, Young-Woo;Park, Jung-Woo;Lee, Young-Kuk;Kim, Chang-Gyoun;Kim, Do-Jin;Kim, Yunsoo
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.19-19
    • /
    • 2002
  • Perovskite-type titanate dielectrics have attracted much attention in memory devices such as DRAMs or FeRAMs due to their high dielectric constants. However, low volatility of the Ba, Sr, Pb or Zr precursors with only thd ligands has limitations in obtaining high quality thin films by liquid source metal organic chemical vapor deposition (LS-MOCVD) processes. To improve the volatility of these precursors, many attempts have been made such as adding polyether ligands to satisfy the coordinative saturation. We report the synthesis of new precursors Ba(thd)₂(tmeea) and Sr(thd)₂(tmeea), where tmeea = tris[2-(2-methoxyethoxy)ethyl]amino, and LS-MOCVD of barium strontium titanate (BSTO) thin films using these precursors. Due to increased basicity of amines compared with ethers, it is expected that the nitrogen-donor ligand will make a strong bond to a metal than an analogous oxygen-donor ligand, consequently improving the volatility and thermal behavior of these precursors. Thin films of BSTO were grown on Pt(111)/SiO₂/Si(100) substrates by LS-MOCVD using a cocktail source consisting of the conventional Ti precursor Ti(thd)₂(O/sup i/Pr), and these new Ba and Sr precursors. As-grown films were characterized by XPS, SEM, XRD, XRF, and C-V and I-V measurements. BSTO films grown at 420℃ were stoichiometric barium strontium titanate with very smooth surface morphology and their dielectric constants were found to be as targe as 450. Dependence of the composition, microstructure and the electrical properties of the BSTO films on the growth temperature, annealing temperature, working pressure, and the composition of the cocktail source will be discussed.

  • PDF

Preparation and Characteristics of PLT(28) Thin Film Using Sol-Gel Method (Sol-Gel 법을 이용한 PLT(28) 박막의 제작과 특성)

  • Kang, Seong-Jun;Joung, Yang-Hee;Yoo, Jae-Hung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.865-868
    • /
    • 2005
  • We fabricated the $Pb_{0.72}La_{0.28}TiO_3 (PLT(28))$ thin film successfully by using the sol-gel method and characterized it to evaluate its potential for being utilized as the capacitor dielectrics of ULSI DRAMs. In our sol-gel process, the acetates were used as the starting materials. Through the TGA-DTA analysis, we established the excellent fabrication conditions of the sol-gel method for the PLT(28) thin film. We obtained the dense and crack-free PLT(28) thin film of 100% perovskite phase by drying at 350$^{\circ}C$ after each coating and final annealing at 650$^{\circ}C$. Electrical properties of PLT(28) thin film were measured through formation on the Pt/Ti/SiO$_2$/Si substrate and its dielectric constant and leakage current density were measured as 936 and 1.1${\mu}$A/cm$^2$, respectively

  • PDF

A Study on the Etching Mechanism of $(Ba, Sr)TiO_3$ thin Film by High Density $BCl_3/Cl_2/Ar$ Plasma ($BCl_3/Cl_2/Ar$ 고밀도 플라즈마에 의한 $(Ba, Sr)TiO_3$ 박막의 식각 메커니즘 연구)

  • Kim, Seung-Bum;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.18-24
    • /
    • 2000
  • (Ba,Sr)$TiO_3$ thin films have attracted great interest as new dielectric materials of capacitors for ultra-large-scale integrated dynamic random access memories (ULSI-DRAMs) such as 1 Gbit or 4 Gbit. In this study, inductively coupled $BCl_3/Cl_2/Ar$ plasmas was used to etch (Ba,Sr)$TiO_3$ thin films. RF power/dc bias voltage=600 W/-250 V and chamber pressure was 10 mTorr. The $Cl_2/(Cl_2+Ar)$ was fixed at 0.2 the (Ba,Sr)$TiO_3$ thin films were etched adding $BCl_3$. The highest (Ba,Sr)$TiO_3$ etch rate is $480{\AA}/min$ at 10 % $BCl_3$ to $Cl_2/Ar$. The change of Cl, B radical density measured by optical emission spectroscopy(OES) as a function of $BCl_3$ percentage in $Cl_2/Ar$. The highest Cl radical density was shown at the addition of 10% $BCl_3$ to $Cl_2/Ar$. To study on the surface reaction of (Ba, Sr)$TiO_3$ thin films was investigated by XPS analysis. Ion bombardment etching is necessary to break Ba-O bond and to remove $BaCl_2$. There is a little chemical reaction between Sr and Cl, but Sr is removed by physical sputtering. There is a chemical reaction between Ti and Cl, and $TiCl_4$ is removed with ease. The cross-sectional of (Ba,Sr)$TiO_3$ thin film was investigated by scanning electron microscopy (SEM), the etch slope is about 65~70$^{\circ}$.

  • PDF

Efficient DRAM Buffer Access Scheduling Techniques for SSD Storage System (SSD 스토리지 시스템을 위한 효율적인 DRAM 버퍼 액세스 스케줄링 기법)

  • Park, Jun-Su;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.48-56
    • /
    • 2011
  • Recently, new storage device SSD(Solid State Disk) based on NAND flash memory is gradually replacing HDD(Hard Disk Drive) in mobile device and thus a variety of research efforts are going on to find the cost-effective ways of performance improvement. By increasing the NAND flash channels in order to enhance the bandwidth through parallel processing, DRAM buffer which acts as a buffer cache between host(PC) and NAND flash has become the bottleneck point. To resolve this problem, this paper proposes an efficient low-cost scheme to increase SSD performance by improving DRAM buffer bandwidth through scheduling techniques which utilize DRAM multi-banks. When both host and NAND flash multi-channels request access to DRAM buffer concurrently, the proposed technique checks their destination and then schedules appropriately considering properties of DRAMs. It can reduce overheads of bank active time and row latency significantly and thus optimizes DRAM buffer bandwidth utilization. The result reveals that the proposed technique improves the SSD performance by 47.4% in read and 47.7% in write operation respectively compared to conventional methods with negligible changes and increases in the hardware.