• Title/Summary/Keyword: DPSSL

Search Result 25, Processing Time 0.02 seconds

Characteristics of Intracavity SHG for the DPSSL with Linear Cavity (선형공진기를 갖는 DPSSL의 Intracavity SHG 특성)

  • 석성수;박덕규;이성만;윤미정;김용기;김선국;정도영;차병헌;김철중
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.70-71
    • /
    • 2002
  • 다이오드 여기 고체레이저(DPSSL, Diode-Pumped Solid State Laser)는 레이저 마킹기, 미세가공기, Ti:sapphire 및 각종 레이저 매질 여기, 의료기기, 그리고 군사용 계측기 등에 다양하게 사용되고 있다. 이러한 응용분야들에 효과적으로 사용되기 위해서는 레이저 출력, 빔모드, 펄스폭, 파장 등이 응용분야에 적합하도록 설계되어야 하며, 고반사율을 갖는 금속의 가공 및 마킹, 그리고 몇가지 레이저 매질의 여기원으로 사용되기 위해서는 짧은 펄스폭과 고품질을 갖는 녹색 파장의 DPSSL 개발이 필요하다. (중략)

  • PDF

Development of a Hybrid DPSSL with a Pulse Parameter Variable LD Seed (광펄스 파라미터 가변 LD를 이용한 복합형 DPSSL 개발)

  • Noh, Young-Chul;Shin, Woo-Jin;Yu, Bong-Ahn;Lee, Yeung-Lak;Jung, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.7-13
    • /
    • 2010
  • We report a hybrid DPSSL with a pulse parameter variable LD seed, all-fiberized polarization-maintained pulsed Yb-doped fiber preamplifier chains, and a bulk Nd:$YVO_4$ power amplifier. Pulse parameter of LD seed was controlled by direct current modulation. The hybrid DPSSL generates 1064 nm laser pulses with an average power of 40W, a pulse duration of 20-40ns, and a repetition rate of 100-500kHz.

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.