• Title/Summary/Keyword: DPSO

Search Result 15, Processing Time 0.336 seconds

Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation (PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화)

  • Song, Hwa-Chang;Ko, Jae-Hwan;Choi, Byoung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.792-797
    • /
    • 2011
  • This paper discusses the application of a hybrid discretiziation method for the discretization procedure that needs to be included in discrete particle swarm optimization (DPSO) for the problem of allocating PV (photovoltaic) systems onto distribution power systems. For this purpose, this paper proposes a rule-based expert system considering the objective function value and its optimizing speed as the input parameters and applied it to the PV allocation problem including discrete decision variables. For multi-level discretization, this paper adopts a hybrid method combined with a simple rounding and sigmoid funtion based 3-step and 5-step quantization methods, and the application of the rule based expert system proposing the adequate discretization method at each PSO iteration so that the DPSO with the hybrid discretization can provide better performance than the previous DPSO.

A Study on an Arrangement of Passive Sonars by using DPSO Algorithm (DPSO 알고리즘을 적용한 수동탐지소나 배치 연구)

  • Kang, Jong-Gu
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • An arrangement of passive sonars is considered to be a fixed underwater surveillance system for detecting an anti-submarine consistently. An effectiveness score for optimizing the arrangement of passive sonars is defined in a function of the probability of detection and localization. These two features contain various probabilistic variations including seasons, sea states, depths of water, etc. Due to this reason, the effectiveness scores show probabilistic characteristics from the input of the arrangement of passive sonars. This paper defines the optimization problem having the results of probabilistic characteristics from various parameters of input conditions. Also, we suggest a simulation-based process of deciding the optimized arrangement of passive sonars using DPSO(Discrete binary version of PSO) method.

The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems (시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

Phasor Discrete Particle Swarm Optimization Algorithm to Configure Community Energy Systems (구역전기사업자 구성을 위한 Phasor Discrete Particle Swarm Optimization 알고리즘)

  • Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.55-61
    • /
    • 2009
  • This paper presents a modified Phasor Discrete Particle Swarm Optimization (PDPSO) algorithm to configure Community Energy Systems(CESs) in the distribution system. The CES obtains electric power from its own Distributed Generations(DGs) and purchases insufficient power from the competitive power market, to supply power for customers contracted with the CES. When there are two or more CESs in a network, the CESs will continue the competitive expansion to reduce the total operation cost. The particles of the proposed PDPSO algorithm have magnitude and phase angle values, and move within a circle area. In the case study, the results by PDPSO algorithm was compared with that by the conventional DPSO algorithm.

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

Performance Comparison of Discrete Particle Swarm Optimizations in Sequencing Problems (순서화 문제에서 01산적 Particle Swarm Optimization들의 성능 비교)

  • Yim, D.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.58-68
    • /
    • 2010
  • Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such as traveling salesman, vehicle routing, and flow shop scheduling problems. They are different in representation of position and velocity vectors, operation mechanisms for updating vectors. In this paper, the performance of 5 DPSOs is analyzed by applying to traditional Traveling Salesman Problems. The experiment shows that DPSOs are comparable or superior to a genetic algorithm (GA). Also, hybrid PSO combined with local optimization (i.e., 2-OPT) provides much improved solutions. Since DPSO requires more computation time compared with GA, however, the performance of hybrid DPSO is not better than hybrid GA.

Particle Swarm Optimizations to Solve Multi-Valued Discrete Problems (다수의 값을 갖는 이산적 문제에 적용되는 Particle Swarm Optimization)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.63-70
    • /
    • 2013
  • Many real world optimization problems are discrete and multi-valued. Meta heuristics including Genetic Algorithm and Particle Swarm Optimization have been effectively used to solve these multi-valued optimization problems. However, extensive comparative study on the performance of these algorithms is still required. In this study, performance of these algorithms is evaluated with multi-modal and multi-dimensional test functions. From the experimental results, it is shown that Discrete Particle Swarm Optimization (DPSO) provides better and more reliable solutions among the considered algorithms. Also, additional experiments shows that solution quality of DPSO is not lowered significantly when bit size representing a solution increases. It means that bit representation of multi-valued discrete numbers provides reliable solutions instead of becoming barrier to performance of DPSO.

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.

A Study on Improvement in the Resistance Performance of Planing hulls by Hull Shape Optimization (고속활주선의 선형 최적화를 통한 저항성능 개선에 관한 연구)

  • Kim, Sunbum
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes the method of hull shape optimization to improve the resistance performance of planing hulls when a reference hull shape and its principal dimensions are given. First, the planing hull of precedent research is adopted as the reference hull and an optimization problem is formulated by defining hull shape parameters. The search space of this research is discretized for computing cost and DPSO(Discrete binary version of Particle Swarm Optimization) method is used to solve the optimization problem. As the result of optimization, the decrease of resistance is confirmed from the comparison between the reference hull's and the modified hull's planing performance from computational results.

Optimized Simulation Framework for the Analysis in Battle systems (전투실험 분석을 위한 최적화 시뮬레이션 프레임워크)

  • Kang, Jong-Gu;Lee, Minkyu;Kim, Sunbum;Hwang, Kun-Chul;Lee, Donghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • The tactical employment is a critical factor to win the war in the modern battlefield. To apply optimized tactics, it needs analyses related to a battle system. Normally, M&S (Modeling & Simulation) has been studied to analyze data in general problems. However, this method is not suitable for military simulations because there are many variables which make complex interaction in the system. For this reason, we suggested the optimized simulation framework based on the M&S by using DPSO (Discrete binary version of PSO) algorithm. This optimized simulation framework makes the best tactical employment to reduce the searching time compared with the normal M&S used by Monte Carlo search method. This paper shows an example to find the best combination of anti-torpedo scenario in a short searching time. From the simulation example, the optimized simulation framework presents the effectiveness.