• 제목/요약/키워드: DPF (Diesel Particulate Filter)

검색결과 120건 처리시간 0.021초

매연여과장치의 재생특성에 관한 연구(1) (A Study on Regeneration Characteristics in DPF(1))

  • 이병호;이상준;최경호
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.72-79
    • /
    • 1998
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter(DPF) using the cerium additive and throttling. The effects of throttling duration and spring tension of throttling valve were studied. Measurements were made on a 6 cylinder direct injection diesel engine and included pressure drop, filter inlet temperature, oxygen concentrations, and torque. The major conclusions of this work include; (i) the pressure drop is increased with increase of the engine load and the engine speed; (ii) the inlet temperature of the filter is reached $350^{\circ}C$ with certain engine operating condition which leads to sufficient temperature to regenerate with additive; and (iii) oxygen concentrations in the filter and engine torque during throttling operation are decreased by 2 percent and 36 percent, respectively, which are not critical about regeneration and vehicle operation.

  • PDF

EffECTIVE PARTICULATES REDUCTION IN DIESEL ENGINES THROUGH THE USE OF FUEL CATALYSED PARTICULATE FILTERS

  • Vincent, M.-W.;Richards, P.-J.;Rogers, T.-J.
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2002
  • There is Increasing world-wide interest in diesel particulate filters (DPF) because of their proven effectiveness in reducing exhaust smoke and particulate emissions. Fine particulates have been linked to human health . DPF use requires a means to secure the bum-out of the accumulated soot, a process called regeneration. If this is not achieved, the engine cannot continue to operate. A number of techniques are available, but most are complex, expensive or have a high electrical demand. The use of fuel additives to catalyse soot bum-out potentially solves the problem of securing regeneration reliably and at low cost. Work on organo-metallic fuel additives has shown that certain metals combine to glove exceptional regeneration performance. Best performance was achieved with a combination of iron and strontium based compounds. Tests were carried out un a bed engine and on road vehicles, which demonstrated effective and reliable regeneration from a tow dose fuel additive, using a single passive DPF. No control valves, flow diverters. heaters or other devices were employed to assist regeneration. Independent particle size measurements showed that there were no harmful side effects from the use of the iron-strontium fuel additive.

경유분사를 이용한 강제재생방식 DPF 시스템 연비 손실 최소화를 위한 재생시점 고찰 (An Experimental Study on Active Regeneration Timing for the Minimization of Fuel Penalty in Active Regeneration DPF System Using Diesel Injection)

  • 나승우;정연규;오광철
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.91-96
    • /
    • 2009
  • The number of vehicles applied diesel engine are rapidly rising for fuel economy. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced emission regulation. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter by car makers but also in retrofit market. In this paper we discussed the optimization of active regeneration timing by comparing the fuel consumption from back pressure caused by PM loading and from active regeneration. The effects of back pressure of DPFs during PM loading, active regeneration condition and engine emission(PM) on additional fuel consumption are experimentally investigated and the proper regeneration timings according to DPF systems and fuel loss for 160,000km are determined.

DPF 재생이 경유자동차 배출특성에 미치는 영향 (Effect of DPF Regeneration on Emission Characteristics in Diesel Engines)

  • 문태영;손지환;윤현진;홍희경;최광호;김정수;김정화
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.142-148
    • /
    • 2014
  • In this study, characteristics of gaseous pollutants and particulate matter were investigated on the condition of DPF regeneration and normal DPF condition. THC, CO, $CO_2$, NOx, and $CH_4$ were analyzed by MEXA-7200H and CVS-7100 respectively. Particulate Matter (PM) was measured by difference in weight of Membrane filter. Particle Number (PN) was measured by CPC analyzer. And Sulfate, Nitrate, Organic were measured by Aerosol Mass Spectrometer (AMS). As a result, gaseous pollutants and particulate matter were detected in higher concentration during DPF regeneration than normal DPF condition. And the PN increased by 94%, the fuel consumption was reduced by 29% on DPF generation process. Sulfate, Nitrate and Organic were undetectable level during normal DPF condition. But the highest concentration of Sulfate, Nitrate and Organic were measured as $100{\mu}g/m^3$, $20{\mu}g/m^3$ and $15{\mu}g/m^3$ respectively on DPF regeneration condition. VOCs concentrations (Benzene, Toluene, Ethylbenzene, Xylene) were analyzed by using PTR-MS. Benzene and Toluene emission have little or no change depending on DPF regeneration. But the Ethylbenzene and Xylene have comparatively low emissions on DPF regeneration.

DPF 테스트 리그를 이용한 SiC DPF의 이상연소 특성 (Uncontrolled Regeneration Characteristics of SiC DPFs using DPF Test Rig)

  • 오광철;이천환;조택동
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.80-86
    • /
    • 2008
  • Uncontrolled regeneration characteristics of two different type SiC DPFs(diesel particulate filters) were investigated by DPF test rig devised to facilitate DPF evaluation, especially for regeneration and MSL(maximum soot loading) test similar to engine dynamometer test. In order to estimate the limits of maximum filter temperature and temperature gradient causing filter fracture, such as crack or whitening, the temperature distributions inside the filter were measured by thermocouples. The maximum filter temperature was observed near the rear plane of central filter region due to heat accumulation by exothermic reaction of PM but the maximum temperature gradient occurred at the boundary of high filter temperature. These two parameters induced the different SiC DPFs to fracture with different modes, whitening and crack.

스크린 필터 구조 Partial Metal DPF의 PM 저감 특성 (PM Reduction Characteristics of Partial Metal DPF with Screen Mesh Filter Structure)

  • 김충희;김현철;이기수;최정황;전문수;신석신;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.82-87
    • /
    • 2013
  • In this work, the 1L grade integrated metal DOC/DPF filter that can install in engine manifold position was developed to investigate the effect of platinum-coating amount of filter on the improvement of filter activation temperature and reduction of particulate matter (PM). This filter was installed in 2.9L CI engine which meets the EURO-4 emission regulation. Tests for PM reduction efficiency of filter were conducted under ND-13 mode with full-load test condition. It was revealed that the time to reach the activation temperature of metal filter ($280^{\circ}C$) was shorter as the amount of platinum-coating increased. This short activation time can be helpful for the reduction of CO and HC emissions during cold start condition. At the same time, PM reduced as the coating amount increased. The reduction percentage of $DOC_{40}$, $DOC_{20}$, and $DOC_0$ were 96.7% (2.34 mg/kW'h), 95.1% (3.47 mg/kW'h), and 94.5% (3.69 mg/kW'h) compared to previous result (71.4 mg/kW'h), respectively.

Rietveld 정밀화법과 SEM-EDS 분석에 의한 DPF용 코디어라이트 하니컴 세라믹스의 결정성장 과정 분석 (Characterization of crystal phase evolution in cordierite honeycomb for diesel particulate filter by using rietveld refinement and SEM-EDS methods)

  • 채기웅;김강산;김정석;김신한
    • 한국결정성장학회지
    • /
    • 제31권3호
    • /
    • pp.116-126
    • /
    • 2021
  • 코디어라이트(Mg2Al4Si5O18) 하니컴 세라믹스의 대표적 응용분야는 자동차 배기가스 정화용 필터(diesel particulate filter(DPF))이다. 천연광물, 조공제, 유기바인더를 혼합한 슬러리를 압출하여 DPF용 하니컴 코디어라이트를 성형한 후 980~1450℃ 범위에서 소결하였다. 소결온도에 따른 결정상(indialite, cordierite, cristobalite, alumina, spinel, mullite, pro-enstatite)의 형성과정을 XRD Rietveld 정밀화법을 이용하여 정량분석 하였다. 동시에, 세라믹 에칭(etching) 방법으로 소결 시료 표면의 비정질상을 제거한 후 SEM/EDS법을 사용하여 결정상들의 형상과 조성을 확인하였다. 이들 결과로부터 DPF 하니컴에서 결정상 형성 과정을 명확히 밝힐 수 있었다. 또한, DPF 하니컴의 소결온도에 따른 열팽창계수(linear coefficient of thermal expansion, CTE) 변화를 분석하였고, 결정상의 정량분석결과를 바탕으로 계산된 CTE와 비교하였다. 소결된 DPF 하니컴 내의 결정상들이 CTE 특성에 미치는 영향을 고찰하였다.

분할형 전기히터 가열이 디젤 차량 배기가스저감장치 필터 내의 온도 분포에 미치는 영향에 관한 실험적 연구 (An Experimental Study on Effect of a Partitioned Electric Heating on Temperature Distribution in a Diesel Particulate Filter)

  • 이충훈;박상천
    • 한국철도학회논문집
    • /
    • 제11권2호
    • /
    • pp.151-157
    • /
    • 2008
  • 디젤엔진 배기가스 저감 장치의 세라믹 필터 재생 특성을 파악하는데 있어서 중요한 인자인 세라믹 필터 내의 온도 분포를 30군데에서 측정하였다. 세라믹 필터 내의 온도 분포에 적합하도록 제작한 K-형 열전대를 사용하여 측정하였다. 5개로 구성된 분할형 전기히터를 장착하고 중심부 전기히터부터 차례로 돌아가면서 ON/OFF 제어를 하면서 세라믹 필터 내의 온도를 측정하였다. 또한 공기 공급 유량을 변화 시키면서 분할형 전기히터의 ON/OFF 제어가 세라믹 필터 내의 온도 분포 특성에 미치는 영향을 연구하였다. 세라믹 필터 내의 온도가 균일한 분포를 가지려면 배기가스저감 장치 입구에서의 유속 분포가 균일한 경우가 유리하였다. 분할형 히터간의 가열 능력 편차에 의해 세라믹 필터 내의 온도 분포도 큰 영향을 받았다.

우리나라 이동오염원의 제어기술의 동향과 발전방안 (Air Pollutants Control Technique Trends for Transportation Sources in Korea)

  • 김정수;엄명도
    • 한국대기환경학회지
    • /
    • 제29권4호
    • /
    • pp.477-485
    • /
    • 2013
  • The major source of harmful air pollutants in Korea have been shifted as economy grows. Particulate matter(PM) and Sulfur dioxide ($SO_2$) emitted from industries and coal-fired domestic sectors were important pollutants in 1970's and later industrializing period of Korea. Then the characteristic of pollution was changed into so-called "developed country type pollution". Vehicles have been responsible for significant amount of Nitric oxide ($NO_x$) pollution and consequent Ozone formation in urban area since 1990's. Variety of control measures have been introduced to deal with the vehicle emissions in Seoul Metropolitan Area (SMA). Emission control technologies have successfully reduced pollutants from vehicles. Three-way catalyst for vehicles fueled by gasoline and liquefied petroleum gas (LPG), for example, has achieved large amount of pollutants. Compressed natural gas (CNG) urban bus have penetrated existing diesel bus market and reduces PM and $NO_x$ emissions in many Korean cities. However, diesel vehicles are still reaming as a critical emission source of urban area. Diesel vehicles gain more popularity than ever because of their better fuel efficiency and driving power. Unfortunately, it is widely known that the pollutant emissions of diesel vehicles are much larger than those of gasoline and LPG vehicles. In this note, we briefly introduce the trends of emission control strategies which are accomplished by automotive industries for about last ten years. Emission regulation, cleaner fuel, diesel particulate filter (DPF) and other measures are discussed from technical as well as legislative perspectives.

Continuously Regenerating DPF장착에 따른 대형디젤기관의 기관성능 및 배출가스특성에 관한 연구 (A Study on Exhaust Emission and Engine Performance Characteristics of Heavy-Duty Diesel Engine with Continuously Regenerating DPF)

  • 나완용;오상기
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.11-15
    • /
    • 2006
  • The increasing numbers of automobiles keep causing air-pollution problems worse than ever. Nowadays, research on catalyst converter and filter trap as a modern technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. This research emphasized on the development of Continuously Regenerating DPF technology which was the best particulate matters removing technology of current existing technology because of its superior comparability and high applicability. This experimental study has been conducted with equipped and unequipped a Continuously Regenerating DPF ona displacement 7,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on engine performance and characteristics on exhaust emissions with the application of a Continuously Regenerating DPF in a heavy-duty diesel vehicle.

  • PDF