• Title/Summary/Keyword: DPAL

Search Result 1, Processing Time 0.018 seconds

Bypass Heat Sink Analysis for a Laser Diode Bar with a Top Canopy

  • Ji, Byeong-Gwan;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • With the increasing use of high-power laser diode bars (LDBs) and stacked LDBs, the issue of thermal control has become critical, as temperature is related to device efficiency and lifetime, as well as to beam quality. To improve the thermal resistance of an LDB set, we propose and analyze a bypass heat sink with a top canopy structure for an LDB set, instead of adopting a thick submount. The thermal bypassing in the top-canopy structure is efficient, as it avoids the cross-sectional thermal saturation that may exist in a thick submount. The efficient thickness range of the submount in a typical LDB set is guided by the thermal resistance as a function of thickness, and the simulated bypassing efficiency of a canopy is higher than a simple analytical prediction, especially for thinner canopies.