• Title/Summary/Keyword: DP(Design Parameters)

Search Result 13, Processing Time 0.031 seconds

A Study on the Design of Bending Dies for Forming of DP590 High Strength Steel Sheet (DP590 고장력 강판 성형을 위한 굽힘 금형 설계에 관한 연구)

  • J. P. Cheon;D. G. Ahn
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • A high strength steel sheet (HSSS) has widely used to improve the specific rigidity of parts and the safety of the passenger in automotive industries. However, the HSSS is difficult to manufacture precise parts through a forming process due to the reduced elongation and the increased elastic recovery. The goal of the paper is to investigate the improved design of bending dies for DP590 HSSS. The over forming type bending dies with cam systems added to the side of the formed part is proposed to improve the quality of the part. The effects of the die design and the forming parameter on formability and elastic recovery characteristics is examined using finite element analyses (FEAs). From the results of FEAs, proper die design and forming parameters are predicted.

Study on Ice Parameters Affecting DP Performance of FPSO in Arctic Ocean (극지용 FPSO의 DP 성능에 영향을 미치는 빙 파라미터 분석에 관한 연구)

  • Choi, Sol-Mi;Lee, Seung-Jae;Han, Solyoung;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.43-50
    • /
    • 2018
  • Recently, various efforts have been made to develop oil and gas in the Arctic Ocean. It is very important to consider the load caused by ice in designing floating structures in the area. The magnitude of the ice load and its impact on a structure should be considered. In this paper, we analyze ice parameters affecting the DP performance of FPSO with a DP-assisted mooring system. Several ice characteristics are selected, and the resulting ice load is calculated using GEM software. Numerous simulations are conducted while changing the values of the parameters, and DP capability plots are generated to visualize the effects of changing these parameters. It is shown that the ice drift speed and thickness are the major properties to be considered in DP system design. The limitations of the analysis and future work are discussed in the conclusion.

A study on the characteristics of DP-PLL in a SDH-based network (동기식 전송망에 적용되는 DP-PLL 특성에 관한 연구)

  • 이창기;홍재근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1289-1301
    • /
    • 1997
  • In a SDH network, one of the most important issues is the realization of network synchronization. In this paper, we presented the relationship between parameters and control algorithm of DP-PLL for design in a SDH based time, SSM processing time, PJE counter and reference switching time, and analyzed phase transients for one node and mutiple nodes through our simulation results with a standard specification. We suggested suitable design method of SDH-DP-PLL.

  • PDF

A Case Study on R&D Process Innovation Using PI6sigma Methodology (PI6sigma를 이용한 R&D 프로세스 혁신 사례 연구)

  • Kim, Young-Jin;Jeong, Woo-Cheol;Choi, Young-Keun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The corporate R&D(Research and Development) has a primary role of new product development and its potential is the most crucial factor to estimate corporate future value. However, its systemic inadequacies and inefficiencies, the shorten product life-cycle to satisfy customer needs, the global operations by outsourcing strategy, and the reduction of product cost, are starting to expose to R&D business processes. The three-phased execution strategy for R&D innovation is introduced to establish master plan for new R&D model. From information technology point of view, PLM(Product Life-cycle Management) is one of the business total solutions in product development area. It is not a system, but the strategic business approach that collaboratively manage the product from beginning stage to end of life in all business areas PLM functions and capabilities are usually used as references to re-design new R&D process. BPA(Business Process Assessment) and 5DP(Design Parameters) in PI6sigma developed by Samsung SDS Consulting division are introduced to establish R&D master plan and re-design process respectively. This research provides a case study for R&D process innovation. How process assessment and PMM(Process Maturity Model) can be applied in business processes, and also it explains process re-design by 5DP method.

The Conceptual Design of Semi-submersible Type Mobile Harbor Using Axiomatic Design Principles (공리설계를 이용한 반잠수식 모바일하버의 개념설계)

  • Lee, Joo-Hee;Yoon, Seong-Jin;Chung, Hyun;Lee, Phill-Seung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The axiomatic design principles are applied to the conceptual design of semi-submersible type mobile harbor (B1). The process of how the design of mobile harbor is elaborated, evaluated and improved from the very beginning is presented in this paper. The concept of mobile harbor is a functional harbor, which can move to a container ship anchoring out of ports in the deep water to load/unload containers on sea and transfer them to their destination ports. This floating system will innovate the maritime transport and distribution since it will greatly enhance the accessibility of super-sized container ships to existing harbors and harbors without enough infrastructures. Designing a mobile system which can perform the functions of traditional harbors on the floating system requires innovative ideas as well as rigorous validations of each sub systems. In order to enhance the chance of design success, we try to satisfy the design axioms in early stage of conceptual design. We use the zigzagging process for defining Functional Requirements (FR)-Design Parameters (DP) hierarchy due to the complexity of the system. In other words, we decomposed the complexity of the design by FR-DP hierarchy and reduced coupled design logically and systematically. This paper shows applicability of the axiomatic design principles to the field of ocean systems engineering.

Design of Automobile Seat for Regulations using Axiomatic Design (공리적 설계에 의한 안전기준을 만족하는 자동차용 시트 설계)

  • Kang Byung-Soo;Jeong a-young;Shin Moon-Kyun;Park Gyung-jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.24-34
    • /
    • 2005
  • The automobile seat must satisfy various safety regulations for the passenger's safety. In many design practices, each component is independently designed by concentrating on a single related regulation. However, since multiple regulations can be involved in a seat component, there may be design confliction among the various safety regulations. Therefore, a new design methodology is required to effectively design an automobile seat. The axiomatic approach is employed for considering multiple regulations. The Independence Axiom is used to define the overall flow of the seat design. Functional requirements (FRs) are defined by safety regulations and components of the seat are classified into groups which yield design Parameters (DPs). The classification is carried out to have independence in the FR-DP relationship. Components in a DP group are determined by using orthogonal away of the design of experiments (DOE). Numerical analyses are utilized to evaluate the safety levels by using a commercial software system for nonlinear transient finite element analysis.

An Enhanced Axiomatic Design Process Using Combinative Index (결합지수를 이용한 강화된 공리적 설계 프로세스)

  • 고희병;문용락;김주호;김영돈;이수홍;장민호;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.595-599
    • /
    • 2000
  • This paper describes an Axiomatic Design Process enhanced by the Combinative Index that represents combinative strength between function requirements and design parameters. This method combines the advantages of these two methods : 1) Combinative Index that represents combinative strength between function requirements and design parameters so that we clearly understand these information. 2) engineering specifications are categorized into strategies, constraints and Functional Requirements. In this paper, relationship of FR's and DP's is regarded as one in which uncertainty of information are fundamentally involved. In the reduction of problem with uncertainty, we propose an enhanced Axiomatic Design Process using Combinative Index.

  • PDF

Effect of some welding parameters on nugget size in electrical resistance spot welding

  • Savas, Omer
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.345-355
    • /
    • 2015
  • In this study, the effects of weld parameters on nugget size and tensile-shear strength of welding joint in electrical resistance spot welding of galvanized DP 600 steel sheets having 1.2 mm were investigated. Taguchi design method has been employed to examine the effects of five parameters of welding current, electrode pressure, welding time, clamping time and holding time by using the $L_{27}(5^3)$ orthogonal array. Results showed that the most effective parameters on tensile shear strength and the nugget size ratio (hn/dn) were found as welding current and welding time, whereas electrode pressure, clamping time and holding time were less effective factors. Max. 545 MPa strength was obtained through proposed optimum conditions by Taguchi technique.

A Study on the Design Parameters of Controller for Dynamic Positioning System (자기위치 유지시스템 제어기의 설계변수에 관한 연구)

  • 이동연;하문근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.8-19
    • /
    • 2003
  • Special purpose vessels such as drillship and ocean research vessels install the DPS(Dynamic Positioning System) to maintain the position and heading for long-time operation. This paper deals with the design parameters for the control theory and filter algorithms of DP system. for the environmental loadings wind forces, current forces and wave forces were considered. In order to estimate the low frequency motions without first-order wave motion, the Kalman filter was used and it was assumed that the first-order wave forces correspond to system noises and first-order wave motions are measurement noises. In this simulation, the length of research vessel is 65 meters and it has four thrusters to maintain the position. The ability of keeping position and heading was confirmed. For the calculation of thruster input the LQR and LOI control theory were adopted and the effects of gain were investigated.

Stress-Based Springback Reduction of an AHSS Front Side Member (고강도강 프런트 사이드멤버의 응력분포 최적화를 통한 스프링백 저감)

  • Song J.H.;Kim S.H.;Park S.H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.295-303
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation The optimization method adopts the response surface method in order to seek for the optimum condition of process parameters such as the blank holding force and the draw-bead force. The present scheme is applied to design of the variable blank holding force in an U-draw bending process and the application is further extend ε d to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.