• Title/Summary/Keyword: DOTAP

Search Result 21, Processing Time 0.026 seconds

Synthesis of NBD-Labeled DOTAP Analog to Track Intracellular Delivery of Liposome

  • Doh, Kyung-Oh;Kim, Bieong-Kil;Lee, Tae-Jin;Park, Jong-Won;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.131-135
    • /
    • 2013
  • A DOTAP analog labeled by NBD on the head group (DTNBD) was designed and synthesized to label DOTAP liposome. The structure was confirmed by $^1H$ NMR and FAB-MS, and the fluorescence of the newly synthesized DT-NBD was observed by fluorescent microscopy. The transfection efficiency of DOTAP liposome containing DT-NBD was comparable to commonly used NBD PE in COS7 and MCF7 cells. Furthermore, the level of cellular uptake and fluorescent intensity of fluorescent liposome containing DT-NBD was higher than NBD PE. Therefore, the novel NBD-labeled DOTAP analog seems to be effectively used for investigation of the cellular interaction and transfection mechanism of DOTAP liposome.

Enhancement of Transduction Efficiency and Antitumor Effects of IL-12N220L-expressing Adenovirus by Co-delivery of DOTAP

  • Youn, Je-In;Jin, Hyun-Tak;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.179-185
    • /
    • 2007
  • Background: Adenovirus (Ad) vectors have been widely used for many gene therapy applications because of their high transduction ability and broad tropism. However, their utility for cancer gene therapy is limited by their poor transduction into cancer cells lacking the primary receptor, coxsackievirus and adenovirus receptor (CAR). Methods: To achieve CAR-independent gene transfer via Ad, we pretreated Ad with 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and analyzed their transduction efficiency into cancer cells in vitro and in vivo comparing with the virus alone. Results: Treatment of DOTAP significantly increased adenoviral gene transfer in tumor cells in vitro. Moreover, DOTAP at an optimum dose $(10{\mu}g/ml)$ enhanced IL-12 transgene expression by fivefold in tumor, and twofold in serum after intratumoral injection of adenovirus expressing IL-12N220L (Ad/IL-12N220L). In addition, cotreatment of DOTAP decreased tumor growth rate in the Ad/IL-12N220L-transduced tumor model, finally leading to enhanced survival rate. Conclusion: Our results strongly suggest that DOTAP could be of great utility for improving adenovirus-mediated cancer gene therapy.

Targeted Gene Delivery of the Cationic Lipid Emulsion System Containing Folate-PEG-DPPE (Folate-PEG-DPPE를 포함하는 양이온성 지질 에멀젼 시스템의 표적화 유전자 전달)

  • Kwon, Sang-Kyoo;Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.213-218
    • /
    • 2009
  • A cationic lipid emulsion containing 1,2-dioleoyl-3-trimethylammonium-propane(DOTAP), Tween80, squalene has been prepared as a gene delivery system. In order to increase the transfection efficiency of gene carrier, folate was used as the tumor-targeting ligand that was attached on PEG-DPPE. HeLa and 293 cells were used for the in vitro transfection experiment. HeLa cell is a folate-positive cell line. The mean particle sizes of polymeric lipid system and DNA/lipid complex system were 206.6 nm and 150.5 nm, respectively. The transfection efficiencies of our carriers(4:l(w:w) complex ratio)were 100 times higher than that of DOTAP only emulsion due to the targeting effect of folate.

Counterion Effects on Transection Activity of Cationic Lipid Emulsion

  • Kim, Young-Jin;Kim, Tae-Woo;Hesson Chung;Kwon, Ik-Chan;Jeong, Seo -Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.279-283
    • /
    • 2001
  • Cationic lipid emulsion system consisting of 1, 2-dioleoyl-sn-slycero-3-trimethyl-ammonium-propane(DOTAP) and plasmin DNA with various counterions in the lipid headgroups were prepared. The transfection activity of the cationic lipid emulsion systems was then investigated in vitro and in vivo. The complex formation of plasmid DNA lipid emulsion was affected by the counterions through charged headgroup repulsion and also by the salt concen-tration in the media. As such , the transfection activity of the DOTAP emulsion system can be controlled by changing the counterions.

  • PDF

Nonviral Vector for Efficient Gene Transfer to Human Ovarian Adenocarcinoma Cells

  • Kim, Chong-Kook;Haider, K.H.;Choi, Sung-Hee;Choi, Eun-Jeong;Ahn, Woong-Shick
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.426.2-426.2
    • /
    • 2002
  • Various strategies have been attempted to design efficient protocols for ovarian cancer gene therapy but there has been little progress in their clinical application. In this study, we formulated and evaluated a new cationic liposome composed of dioleoyltrimethylaminopropane (DOTAP), 1.2-dioleoyl-3-phosphophatidylethanolamine (DOPE). and cholesterol (Chol) (DDC) for plasmid DNA transfer into ovarian cancer cells. The DOC liposome was prepared by mixing DOTAP. DOPE. and Chol using extrusion method. (omitted)

  • PDF

Polyethylenimine Mediated Gene Delivery with Various Liposomal Formulations (폴리에틸렌이민 및 그들의 리포좀이 중재된 Plasmid DNA의 운반)

  • Han, In Sook;Jun, Mi Sook;Lee, Kab Yong
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.193-198
    • /
    • 1999
  • The transfection efficiency of plasmid DNA was inspected using multi-cationic polymer, 5, 10, 25 and 50KD polyethylenimine (PEI). The optimal neutralization ratio of PEI/DNA complexes by agarose assay was 1.5-2.0 (nmol/nmol) without much difference in molecular weight of PEI.In vitro transfection assay, most of PEI-mediated plasmid delivery was better compared to the naked DNA. Especially, 25KD PEI at optimal condition gave higher transfection rather than the standard assay of DEAE-dextran or Lipofectin. To enhance the cell targeting delivery, the liposome formulations were introduced using phospholipids. As a result, PC/PE liposomes increased 2-2.5 times of the transfection efficiency of PEI single or PC/PE single delivery, but not the case of 25KD PEI. Moreover, the DOTAP/PE-introduced PEI delivery reduced the transfection of DOTAP/PE single delivery. All these results proved that the PEI can be used not only good transfectants and but also good DNA condensing agents in neutral/anionic liposome for cell targeting delivery.

  • PDF

Synthesis and Optimization of Cholesterol-Based Diquaternary Ammonium Gemini Surfactant (Chol-GS) as a New Gene Delivery Vector

  • Kim, Bieong-Kil;Doh, Kyung-Oh;Bae, Yun-Ui;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-${\alpha}$- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.

Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA

  • Kim, Dong-Bum;Kwon, Sang-Hoon;Ahn, Chi-Seok;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Kwon, Hyeok-Yil;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.758-763
    • /
    • 2011
  • Immunostimulatory CpG-DNA targeting TLR9 is one of the most extensively evaluated vaccine adjuvants. Previously, we found that a particular form of natural phosphodiester bond CpG-DNA (PO-ODN) encapsulated in a phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE) : cholesterol hemisuccinate (CHEMS) (1 : 1 ratio) complex (Lipoplex(O)) is a potent adjuvant. Complexes containing peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Here, we showed that IL-12 production was increased in bone marrow derived dendritic cells in a CpG sequence-dependent manner when PO-ODN was encapsulated in Lipoplex(O), DOTAP or lipofectamine. However, the effects of Lipoplex(O) surpassed those of PO-ODN encapsulated in DOTAP or lipofectamine and also other various forms of liposome-encapsulated CpG-DNA in terms of potency for protein antigen-specific IgG production and Th1- associated IgG2a production. Therefore, Lipoplex(O) may have a unique potent immunoadjuvant activity which can be useful for various applications involving protein antigens as well as peptides.

Preparation and Characterization of Bovine Serum Albumin-loaded Cationic Liposomes: Effect of Hydration Phase

  • Park, Se-Jin;Jeong, Ui-Hyeon;Lee, Ji-Woo;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.353-356
    • /
    • 2010
  • Although liposomes have been applied as drug delivery systems in various fields, the usage was limited due to the low encapsulation efficiency compared to other carrier systems. Here, cationic liposomes were prepared by mixing 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP) as a cationic lipid, 1,2-dioleoyl-sn-glycerol-phosphoethanolamine (DOPE) and cholesterol (CH), and the liposomes were hydrated by varying the aqueous phases such as phosphate-buffered saline (PBS), 5% dextrose, and 10% sucrose in order to improve the encapsulation efficiency of bovine serum albumin (BSA). The particle size and zeta potential were determined by dynamic light scattering method and in vitro release patterns were investigated by spectrophotometry. Particle size and zeta potential of liposomes were varied depending on the ratio of DOTAP/DOPE/CH in range of 270-350 nm and 0.8-9.7 mV, respectively. Moreover, the addition of polyethylene glycol (PEG) improved the encapsulation efficiency from 37% to 43% as well as reduced particle sizes of liposomes while the liposomes were hydrated in PBS. When the liposomes were hydrated with 10% sucrose, the encapsulation efficiency of BSA was higher than any other groups. Whereas PBS was used as hydration solution, lower encapsulation efficiency was obtained compared with other groups. More than 60% of BSA was released from the liposomes hydrated with 10% sucrose; thereafter another 20% of BSA was released. Therefore, release pattern of BSA from cationic liposomes was extended release in this study. From the results, cationic liposomes dispersed in 10% sucrose would be potential carrier with high encapsulation efficiency.

Enhanced p53 Gene Transfer to Human Ovarian Cancer Cells using Cationic Nonviral Vector. DOC

  • Choi, Eun-Jeong;Choi, Sung-Hee;Park, Jeong-Sook;Ahn, Woong-Shick;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.427.2-428
    • /
    • 2002
  • Previously we formulated new cationic liposomes, DDC, composed of DOTAP. DOPE, and cholesterol (Chol) in 1 : 0.7 : 0.3 molar ratios, and showed that DDC efficiently deliver the plasmid DNA into ovarian cancer cell lines. Here, wild type p53 DNA was transfected into ovarian cancer cells, using the DOC as a nonviral vector and the expression and activity of p53 gene were evaluated in vitro and in vivo. The complexes of plasmid DNA (pp53-EGFP) and DDC were transfected into OVCAR-3 cells. The gene expression was determined by RT -PCR and western blot analysis. (omitted)

  • PDF