• Title/Summary/Keyword: DOSE

Search Result 20,429, Processing Time 0.041 seconds

Thyroid Doses in Children from Radioiodine following the Accident at the Fukushima Daiichi Nuclear Power Plant

  • Kim, Eunjoo;Kurihara, Osamu
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.2-10
    • /
    • 2020
  • Background: Huge amounts of radionuclides were released into the environment due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, which caused not only serious contamination on the ground, but also radiation exposure to the public. One problem that remains in performing the dose estimation is the difficulty of estimating the internal thyroid dose due to the intake of radioiodine (mainly, 131I) because of limitations to the human data available. Materials and Methods: The relevant papers were collected and reviewed by the authors. The results of thyroid dose estimates from different studies were tabulated for comparison. Results and Discussion: The thyroid dose estimates from the studies varied widely. The dose estimates by the United Nations Scientific Committee on the Effects of Atomic Radiation were higher than the others due to the ingestion dose being based on conservative assumptions. The dose estimates by Japanese experts were mostly below 20-30 mSv. The recent studies suggested that exposure on March 12, 2011 would be crucial for late evacuees from the areas near the FD-NPP because of the possible intake of short-lived radionuclides other than 131I. Further multilateral studies are vital to reduce uncertainties in the present dose estimations. Conclusion: The estimation of the thyroid doses to Fukushima residents still has many uncertainties. However, it is considered unlikely that the thyroid doses exceeded 50 mSv except in some extreme cases. Further multilateral studies are thus necessary to reduce the uncertainties in the present dose estimations.

CHANGING OF RGS TRANSCRIPTS LEVELS BY LOW-DOSE-RATE IONIZING RADIATION IN MOUSE TESTIS

  • Kim, Tae-Hwan;Baik, Ji Sue;Heo, Kyu;Kim, Joong Sun;Lee, Ki Ja;Rhee, Man Hee;Kim, Sung Dae
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Deleterious effects of high dose radiation exposure with high-dose-rate are unarguable, but they are still controversial in low-dose-rate. The regulator of G-protein signaling (RGS) is a negative regulator of G protein-coupled receptor (GPCR) signaling. In addition, it is reported that irradiation stress led to GPCR-mediated mitogen-activated protein kinase (MAPK) and phosphotidylinositol 3-kinase (PI3-k) signaling. The RGS mRNA expression profiles by whole body radiation with low-dose-rate has not yet been explored. In the present study, we, therefore, examined which RGS was modulated by the whole body radiation with low-dose-rate ($3.49mGy{\cdot}h^{-1}$). Among 16 RGS expression tested, RGS6, RGS13 and RGS16 mRNA were down-regulated by low-dose-rate irradiation. This is the first report that whole body radiation with low-dose-rate can modulate the different RGS expression levels. These results are expected to reveal the potential target and/or the biomarker proteins associated with male testis toxicity induced by low-dose-rate irradiation, which might contribute to understanding the mechanism beyond the testis toxicity.

Dose Distribution of Total Body Irradiation for Bone Marrow Transplantation in Leukemia (백혈병에서 골수이식을 위한 전신방사선조사시 선량분포 특성)

  • 김성규;김명세;신세원
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.47-55
    • /
    • 1996
  • Total Body Irradiation(TBI) is one of the essential treatment modalities in bone marrow transplantation for leukemia and lymphoma. Various techniques and dose regimens were introduced with sevelal advantages and disadvantages. In TBI, lung block could reduce lung dose to 75% of original beam for decreasing lung dose with homogenous total body irradiation. Accurate provision for specified dose and the desired homogeneity are essential before clinical total body irradiation. When performed in total body irradiation, the problem obtain uniform dose distribution in brain, neck, lung, umbilicus, pelvis and leg. Authors compared to dose distribution with method 1 and method 2. The method 1 used compensating filters for homogeneous dose distribution(Minesota University Method). The method 2 used fixing frame made in aeryl developing authors. Results were following. 1. Method 1 was showed dose distribution from 95.6% to 100%, method 2 showed dose distribution from 95.4% to 100%. 2. Method 2 was showed different to 3.4% at skin region and midline in the brain. In the neck, showed different to 1.5%. In the umbilicus. showed different to 2.3%.

  • PDF

Single Oral Dose Toxicity Test and Four Weeks Repeated Oral Dose Determination Test of GST in Sprague-Dawley Rats (GST의 Sprague-Dawley Rat를 이용한 단회 경구투여 독성시험 및 4주 반복 경구투여 용량결정시험)

  • Han, Jong-Min;Hong, Jee-Hee;Lee, Hye-Yeong;Jung, In-Chul;Jin, Mi-Rim;Kim, Seong-Hyeong;Park, Yang-Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.349-361
    • /
    • 2013
  • Objectives : This study aimed to evaluate the single oral dose toxicity and four weeks repeated dose determination of Gamisasangja-tang (GST) in male and female Sprague-Dawley rats. Methods : In the single oral toxicity study, rats were orally administered a single dose of 0 and 5,000 mg/kg GST. There were 5 rats in each group. After single administration, mortality, clinical signs, body weight changes and gross pathological finding were observed for 14 days. In the 4-weeks repeated oral dose determination study, rats were orally administered a single dose of 0, 1,250, 2,500 or 5,000 mg/kg GST. There were 5 rats in each group. Mortality, clinical signs, body weight changes, food consumption and gross pathological finding were observed for 28 days. Organ weight, clinical chemistry and hematology were tested after 28 days. Results : There was no mortality in either of the two studies. There were also no significant differences in clinical sign, body weight, organ weights, hematological or serum chemical parameters between the GST and control groups. Conclusions : The results obtained in this study suggest that the 50% lethal dose of GST is over 5,000 mg/kg, so this finding would be expected to provide scientific evidence for the safety of GST.

Single-Dose Oral Toxicity Test of Woohwangchungshim-won in Mice (우황청심원의 마우스 단회 경구투여 독성시험 연구)

  • Lee, Je Won;Baek, Kyung Min;Chang, Woo Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.186-194
    • /
    • 2014
  • The object of this study was to obtain acute toxicity information (single-dose oral toxicity) of Woohwangchungshim-won (WHCSW), a pill type herbal medicine used in Korean Medicine (KM) for treating stroke. In order to obtain the 50% lethal dose (LD50), approximate lethal dosage (ALD) and target organs, WHCSW powders were once orally administered to female and male ICR mice at dose levels of 2,000, 1,000, 500 and 0 (control) mg/kg (body weight.) according to the recommendation of Korea Food and Drug Administration (KFDA) Guidelines (Notification No. 2009-116). The mortality and changes in the body weight, clinical signs and gross observation were monitored for 14 days after single-dose oral administration of WHCSW according to KFDA Guidelines with organ weights and histopathological changes were observed in 12 principle organs. After single-dose oral administration of WHCSW, we could not find any mortality and toxicological evidences up to 2,000 mg/kg-administered group, except for some accidental findings and dose-independent increases of body weight gains in female 1,000 and 500 mg/kg-administered female mice. The results obtained in this study suggest that the LD50 and ALD of WHCSW in both female and male mice after single-dose oral administration were considered as over 2,000 mg/kg because no mortalities were detected up to 2,000 mg/kg that was the highest dose recommended by KFDA and Organization for Economic Co-Operation and Development (OECD), and can be safely used in clinics.

A Convenient System for Film Dosimetry Using NIH-image Software

  • Kurooka, Masahiko;Koyama, Syuji;Obata, Yasunori;Homma, Mitsuhiko;Imai, Kuniharu;Tabushi, Katsuyoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.260-262
    • /
    • 2002
  • An accurate measurement of dose distribution is indispensable to perform radiation therapy planning. A measurement technique using a radiographic film, which is called a film dosimetry, is widely used because it is easy to obtain a dose distribution with a good special resolution. In this study, we tried to develop an analyzing system for the film dosimetry using usual office automation equipments such as a personal computer and an image scanner. A film was sandwiched between two solid water phantom blocks (30 ${\times}$ 30 ${\times}$ 15cm). The film was exposed with Cobalt-60 ${\gamma}$-ray whose beam axis was parallel to the film surface. The density distribution on the exposed film was stored in a personal computer through an image scanner (8bits) and the film density was shown as the digital value with NIH-image software. Isodose curves were obtained from the relationship between the digital value and the absorbed dose calculated from percentage depth dose and absorbed dose at the reference point. The isodose curves were also obtained using an Isodose plotter, for reference. The measurements were carried out for 31cGy (exposure time: 120seconds) and 80cGy (exposure time: 300seconds) at the reference point. While the isodose curves obtained with our system were drawn up to 60% dose range for the case of 80cGy, the isodose curves could be drawn up to 80% dose range for the case of 31cGy. Furthermore, the isodose curves almost agreed with that obtained with the isodose plotter in low dose range. However, further improvement of our system is necessary in high dose range.

  • PDF

A New Method for Measuring the Dose Distribution of the Radiotherapy Domain using the IP

  • Homma, Mitsuhiko;Tabushi, Katsuyoshi;Obata, Yasunori;Tamiya, Tadashi;Koyama, Shuji;Kurooka, Masahiko;Shimomura, Kouhei;Ishigaki, Takeo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.237-240
    • /
    • 2002
  • Knowing the dose distribution in a tissue is as important as being able to measure exposure or absorbed dose in radiotherapy. Since the Dry Imager spread, the wet type automatic processor is no longer used. Furthermore, the waste fluid after film development process brings about a serious problem for prevention of pollution. Therefore, we have developed a measurement method for the dose distribution (CR dosimetry) in the phantom based on the imaging plate (IP) of the computed radiography (CR). The IP was applied for the dose measurement as a dosimeter instead of the film used for film dosimetry. The data from the irradiated IP were processed by a personal computer with 10 bits and were depicted as absorbed dose distributions in the phantom. The image of the dose distribution was obtained from the CR system using the DICOM form. The CR dosimetry is an application of CR system currently employed in medical examinations to dosimetry in radiotherapy. A dose distribution can be easily shown by the Dose Distribution Depiction System we developed this time. Moreover, the measurement method is simpler and a result is obtained more quickly compared with film dosimetry.

  • PDF

The Influence of the Change of Patient Radiation Exposure Dose Distribution on the Grid Condition and Detector Acquisition Dose on the Exposure Distance in the Use of Amorphous Silicon Thin Film Transistor Detector with AEC (자동노출제어장치를 이용한 비정질 실리콘 평판형 검출기에서 격자의 조건에 따른 환자선량 변화와 촬영 거리의 변화가 검출기 획득선량에 미치는 영향)

  • Yoon, Seok-Hwan;Choi, Jun-Gu;Han, Dong-Kyoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2007
  • This study attempts to propose an appropriate method of using digital medical imaging equipments, by studying the effects of automatic exposure control(AEC), grid ratio and the change of radiography distance on the patient dose and detertor acquisition dose during the procedure of acquiring image through a digital medical imaging detector. The change of dose following the change of grid ratio's exposure and radiography distance was measured, by using an abdominal phantom organized with tissue equivalent materials in an amorphous silicon thin film transistor detecter installed with AWC. The case to use grid ratio 12 : 1, focal distance 180cm to radiography distance 110cm in AEC, the patient dose increased rather when we used grid ration 10 : 1, focal distance 110cm. When AEC was not used,the dose necessary for image acquisition decreased as the grid ratio became higher and the distance became further. but detector acquisition dose was not reduced when in applied AEC. When purchasing digiral medical imaging equipments, optional items such as AEC and grid shall be accurately selected to satisfy the use of the equipments. Radiography error made by radiation technologist and unnenessary patient dose can be reduced by selecting equipments with a radiography distance marker equipment when it did not apply AEC. These equipments can also be helpful in maintaining high imaging quality, one of the merits of digital detectors.

  • PDF

A Study on Dobe Distribution outside Co-60 $\gamma$ Ray ana 10MV X Ray Fields ($^{60}Co\;\gamma$선과 10MV X선의 조사면 밖의 선량분포에 관한 연구)

  • Kang, Wee-Saing;Huh, Seung-Jae;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.271-280
    • /
    • 1984
  • The peripheral dose, defined as the dose outside therapeutic photon fields, which is responsible for the functional damage of the critical organs, fetus, and radiation. induced carcinogenesis, has been investigated for $^{60}Co\;\gamma$ ray and 10 MV Xray. It was measured by silicon diode controlled by semiautomated water phantom without any shielding or with lead plate of HVL thickness put horizontally or vertically to shield stray radiations. Authors could obtain following results. 1. The peripheral dose was larger than $0.7\%$ of central axis maximum dose even at 20cm distance from field margin. That is clinically significant, so it should be reduced. 2. Even for square fields of 10 MV Xray, radial peripheral dose distribution did not coincide with transverse distribution, because of the position of collimator jaws. 3. Between surface and $d_m$, the peripheral dose distributions show a pattern of the dose distribution of electron beams and the maximum doss was approximately proportional to the length of a side of square field. 4. The peripheral doses depended on radiation quality, field size, distance from field margin and depth in water. Distance from field margin was the most important factor. 5. Except for near surface, the peripheral dose from phantom was approximately equal to that from therapy unit. 6. To reduce the surface dose outside fields, therapist should shield stray radiations from therapy unit by lead plate of at least one HVL for 10 MV X-ray and by bolus equivalent to tissue of 0.5cm thickness for $^{60}Co$. 7. To reduce the dose at depth deeper than $d_m$, it is desirable to shield stray radiations from therapy unit by lead.

  • PDF

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.