• Title/Summary/Keyword: DOE-2

Search Result 373, Processing Time 0.026 seconds

Effect of ${\beta}$-glucan on Growth, Feed Efficiency and Hematologic Index in Sparague-Dawley Rats (${\beta}$-glucan이 Sparague-Dawley 랫드의 성장, 식이효율 및 혈액성상에 미치는 효과)

  • kim, So-Jung;Lee, Jin-Seok;Kwon, Jung-Ki;An, In-Jung;Lee, Seung-Ho;Park, Young-Seok;Park, Byung-Kwon;Kim, Byeong-Soo;Kim, Sang-Ki;Song, Sung-Ki;Lee, Jong-Dae;Cho, Sung-Doe;Choi, Chang-Sun;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • To investigate the toxicological effects of ${\beta}$-glucan, we performed basic studying on ${\beta}$-glucan in Sprague-Dawley (SD) rats. Standard endpoints in this study included mortality, clinical observations, changes of body weights, analysis on food consumption, ophthalmoscopic examination, hematologic examination, serum biochemistry, analysis of organ weights, gross anatomic pathology and histopathology. No clinical signs and mortality were observed in animals treated with beta-glucan throughout the experimental period. The average body weight of each treatment groups showed similar levels at end of experiment. There were no treatment-related changes in mortality, body weights changes, food consumption, ophthalmoscopic examination. Although there were statistically significant differences between the control and treated groups in some relative and absolute organ weights, and hematological and biochemical analysis, the data were in biologically normal ranges and did not show a dose-dependent manner. In the morphological change, hepatic tissue were not showed ballooning degeneration and irregular arrangement of hepatic cell in ${\beta}$-glucan treatment groups with control group. Also, organs weights (liver, heart, kidney and stomach) and hematological indices (WBC, RBC, Hb, Hct and Platelet) did not show statistically significant differences among the experimental groups. In summary of these results, there were no changes in mortality, mean body weight, clinical signs, food consumption. There were no changes in ophthalmological examination, hematology, blood chemistry, necropsy and histopathology. In conclusion, although further investigation of glucan should be performed in the functions registered in many ancient literatures, ${\beta}$-glucan is physiologically safe and may have potential as candidate food for human health.

A study on the regulatory effect of p-38 MAP kinase on nitric oxide and interleukin-6 in osteoblasts (조골세포에시 p-38 MAP kinase의 nitric oxide 및 interleukin-6 생성조절에 관한 연구)

  • Lee, Kyung-Won;Lee, Doe-Hoon;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.199-210
    • /
    • 2003
  • Tooth movement is the result of bone metabolism in the periodontium, where various cytokines take important roles. Interleukin-6(II-6) and nitrous oxide (NO) were reported to be secreted from osteoblasts in the process of bone resorption. The mechanism of the process has not been clearly understood, but the activation of mitogen-activated protein kinase (MAPK) was known to be an important process in the release of the inflammatory cytotines in macrophages. In this regard, to prove the role of MAPK in the release of IL-6 and NO in MC3T3E-1 osteoblasts, Northern blot analysis, Western blot analysis and immune complex kinase assay were used. As a result, the treatment of MC3T3E-1 osteoblast cultures with combined $interferon-\gamma(IFN-\gamma)$, lipopolysaccharide (LPS) and tumor necrosis $factor-\alpha(TNF-\alpha)$ induces expressions of inducible nitric oxide synthase (iNOS) and IL-6, resulting in sustained releases of large amounts of NO and IL-6. However, $IFN-\gamma,\;LPS,\;and\;TNF-\alpha$ individually induce a non-detectable or small amount of NO and IL-6 in MC3T3E-1 osteoblasts. The role of MAPK activation in the early intracellular signal transduction involved in iNOS and IL-6 transcription in the combined agents-stimulated osteoblasts has been investigated. The p38 MAPK pathway is specifically involved in the combined agents-induced NO and IL-6 release, since NO and IL-6 release in the presence of a specific inhibitor of p38 MAPK, 4-(4-fluorophenyl)-2-(4-metylsulfinylphenyl)-5-(4-metylsulfinylphenyl)-5-(4-pyridyl)imidazole) (SB203580), were significantly diminished. In contrast, PD98059, a specific inhibitor of MEK1, had no effect on NO and IL-6 release. Northern blot analysis showed that the p3a MAPK pathway controlled the iNOS and IL-6 transcription level. These data suggest that p38 MAPK play an important role in the secretion of NO and IL-6 in $LPS/IFN{\gamma}-or\;TNF-\gamma-treated\;MC3T3E-1$ osteoblasts.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.