• Title/Summary/Keyword: DOE (design of experiments)

Search Result 225, Processing Time 0.028 seconds

Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments (실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계)

  • Park, Jun Hyeong;Lee, Daeyong;Yang, Jung-Wook;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Optimal design of High precision Maglev system using Finite Element Method and Design Of Experiments (유한 요소법과 실험계획법을 병행 사용한 고정밀 자기 부상 시스템의 최적 설계)

  • Lee, Sung-Gu;Won, Sung-Hong;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1267-1269
    • /
    • 2005
  • This paper presents the design for improving performance of the high-precision Magnetic levitation system. Motor performance on various design schemes such as thickness and magnetizing patterns of the permanent magnets, pole pitch, length of air gap, turn number of windings, and thickness of the aluminum-core has been investigated in detail by using FEM(Finite Element Method) Simulation-based DOE(Design of Experiments) method is also applied in order to reduce the large number of analysis according to each design variable and consider the effect among variables. The design in all aspects is proposed by an optimization algorithm using regression equation derived from the simulation-based DOE.

  • PDF

Optimal Design for the Thermal Deformation of Disk Brake by Using Design of Experiments and Finite Element Analysis (실험계획법과 유한요소해석에 의한 디스크 브레이크의 열변형 최적설계)

  • Lee, Tae-Hui;Lee, Gwang-Gi;Jeong, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1960-1965
    • /
    • 2001
  • In the practical design, it is important to extract the design space information of a complex system in order to optimize the design because the design contains huge amount of design conflicts in general. In this research FEA (finite element analysis) has been successfully implemented and integrated with a statistical approach such as DOE (design of experiments) based RSM (response surface model) to optimize the thermal deformation of an automotive disk brake. The DOE is used for exploring the engineer's design space and for building the RSM in order to facilitate the effective solution of multi-objective optimization problems. The RSM is utilized as an efficient means to rapidly model the trade-off among many conflicting goals existed in the FEA applications. To reduce the computational burden associated with the FEA, the second-order regression models are generated to derive the objective functions and constraints. In this approach, the multiple objective functions and constraints represented by RSM are solved using the sequential quadratic programming to archive the optimal design of disk brake.

Application of ANOVA and DOE by Using Randomized Orders and Geometrical Properties (랜덤화 순서와 기하학적 특성을 고려한 분산분석과 실험계획의 응용방안)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.277-292
    • /
    • 2012
  • The research presents an application of Balanced ANOVA (BANOVA) by utilizing randomized orders for various Split-Plot Designs (SPDs) which include two cell designs, split-plot with one-way HTC (Hard to Control) factor, split-plot with two-way HTC factor, split-split-plot design and nested design. In addition, four MINITAB examples of 2-level split-plot designs based on the number of blocks and the type of whole-plots are presented for practitioners to obtain comprehensive understanding. Furthermore, the geometrical interrelated properties among three typical Designs of Experiments (DOE), such as Factorial Design (FD), Response Surface Design (RSD), and Mixture Design (MD) are discussed in this paper.

  • PDF

Ultra-precision Grinding Optimization of Mold Core for Aspheric Glass Lenses using DOE and Compensation Machining (실험계획법과 보정가공을 이용한 비구면 유리렌즈 성형용 코어의 초정밀 연삭가공 최적화)

  • Kim, Sang-Suk;Lee, Yong-Chul;Lee, Dong-Gil;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.45-50
    • /
    • 2007
  • The aspheric lens has become the most popular optical component used in various optical devices such as digital cameras, pick-up lenses, printers, copiers etc. Using aspheric lenses not only miniaturizes and reduces the weight of products, but also lower prices and higher field angles can be realized. Additionally, plastic lenses are being changed to glass lenses more recently because of low accuracy, low acid-resistance and low thermal-resistance in the plastic lenses. Currently, one fabrication method of glass lenses is using a glass-mold method with a high precision mold core for mass production. In this paper, DOE (Design Of Experiments) and compensation machining were adopted to improve the surface roughness and the form accuracy of the mold core. The DOE has been done in order to discover the optimal grinding conditions which minimize the surface roughness with factors such as work spindle revolution, turbine spindle revolution, federate and cutting depth. And the compensation machining is used to generate high form accuracy of the mold core. From various experiments and analyses, we could obtain the best surface roughness 5 nm in Ra, form accuracy $0.167\;{\mu}m$ in PV.

An Optimization Algorithm Using Kriging (크리킹을 이용한 최적화 알고리즘)

  • Park, Jung-Sun;Ro, Young-Hee;Im, Jong-Bin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • Kriging has been effectively used to approximate for optimization. This study has been devised to improve efficiency and accuracy of approximate optimal design using Kriging. The design of experiments (DOE), the classical design and space-filling design, are used to provide maximum information using minimum number of design of experiments. The proposed methodology is applied to the designs of 3-bar truss and Sandgren's pressure vessel.

  • PDF

Evaluation of the Forging Process by the Application of Optimization Technology (최적화기법의 적용을 통한 냉간단조품의 성형공정 평가)

  • Yeo H.T.;Park K.H.;Hur K.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.226-231
    • /
    • 2006
  • The fuel injector is a pa.1 that controls the fuel supply of automotive engine. The housing of the fuel injector supports the rod, the needle valve and the solenoid. In this study, the rigid-plastic FE-analysis by using the design of experiments (DOE) and the response surface methodology (RSM) has been performed to produce the product reducing the under-fill and the maximum effective strain. From the results of DOE, the stem of counter punch and the face angle of punch at the $1^{st}$ process, and the stem of punch at the $2^{nd}$ process were determined as the significant design variables far each response such as the upper under-fill, lower under-fill and the maximum effective strain. From the results of RSM, the optimal values of the design variables have been also determined by simultaneously considering the responses.

The optimization of suspension system for high performance of Korean Tilling Train (한국형 틸팅 열차의 성능 향상을 위한 현가장치 최적화)

  • Lee, Su-In;Park, Tae-Won;Yoon, Ji-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1224-1228
    • /
    • 2009
  • The korean tilting train can increase the whole operating speed at a curved railroad, reducing the lateral acceleration with the tilting mechanism unlike the train developed before. However, increasing operating speed on the curved section, may cause safety problem of train travel. In general, a suspension system has important effects on driving safety. Therefore, optimization of suspension system is necessary to secure the safety of the tilting train. In this study, the tilting train suspension system has been optimized using Design of Experiments (DOE). First, the design parameter is selected using sensitivity analysis. A lateral acceleration which affects on the driving safety is chosen as the objective function. And the Design of Experiments (DOE) is used for optimization. As a result, new design parameters which show better performance than the existing suspension system has been suggested.

  • PDF

Robust Design Methodology for Optimizing Perceived QoS of VoIP (인터넷 전화의 사용자 관점 품질 최적화를 위한 강건 설계 기법 연구)

  • Yoon, Hyoup-Sang;Choi, Soo-Hyun;Kim, Seong-Joon
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2009
  • During the past few years, design of experiments (DOE) has been gaining acceptance in the telecommunications research community as a mean for designing and analyzing experiments economically and efficiently. In addition, the need for introducing a systematic robust design methodology (i.e., one of the most popular DOE methodologies) to network simulations has been increasing. In this paper, we present an architecture of voice over IP (VoIP) application and the E-Model for calculating the perceived quality of service (QoS). Then, we apply the Taguchi robust design methodology to optimize the perceived QoS of VoIP application, and describe the detailed step-by-step procedures. We have used ns-2 simulator to collect experimental data in which the SN ratio, a robustness measure, is analyzed to determine an optimal design condition. The analysis shows that "initial delay time in playout buffer" is a major control factor for ensuring robust behaviors of the perceived QoS of VoIP. Finally, we verify the proposed optimal design condition using a confirmation experiment.