• Title/Summary/Keyword: DOE(Diffractive Optical Element)

Search Result 27, Processing Time 0.029 seconds

Four-beam Interference Optical System for Laser Micro- structuring Using Picosecond Laser

  • Noh, Ji-Whan;Lee, Jae-Hoon;Shin, Dong-Sig;Sohn, Hyon-Kee;Suh, Jeong;Oh, Jeong-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • A four beam interference optical system for laser micro structuring using a pulse laser was demonstrated. The four beam interference optical system using a pulse laser(picosecond laser) can fabricate micro structure on mold material(NAK80) directly. Micro structure on the polymer can be reproduced economically by injection molding of the micro structure on the mold material. The four beam interference optical system was composed by the DOE(Diffractive Optical Element) and two lenses. The laser intensity distribution of four beam interference was explained by an interference optics point of view and by the image optics point of view. We revealed that both views showed the same result. The laser power distribution of a $1{\mu}m$ peak pattern was made by the four beam interference optical system and measured by the objective lens and CCD. A $1{\mu}m$ pitch dot pattern on the mold material was fabricated and measured by SEM(Scanning Electron Microscopy).

Numerical Simulation of Input Beam Effects on Diffractive Optical Elements (입력 빔 형태에 따른 회절광학소자에서의 빔 효율 시뮬레이션)

  • Kim, Jong-Gi;Jeong, Yun-Seop;Seo, Yong-Gon;O, Gyeong-Hwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.197-198
    • /
    • 2008
  • 본 논문에서는 Iterative Fourier Transform Algorithm $Method(IFTA)^{(1)}$를 사용하여 Diffractive Optical Element(DOE)를 통과한 빛의 Shape이 Input Beam의 각 조건에 따라 얼마나 원하는 형태에 가까워지는지를 Input 대비 Output의 Efficiency와 Signal to Noise Ratio(SNR) Simulation 을 통해 알아보았다. Input beam의 종류는 Gaussian, Supergaussian, Plane, Spherical, Quadratic wave 으로 하고 각각의 경우에 대해 Beam Diameter, Polarization, Wavelength를 변화시키며 DOE에서의 회절 현상을 simulation하였다. 이때 Polarization은 Linear, Circular, Elliptical 형태로 변화시켰고 Wavelength는 332.8nm에서 832.8nm까지의 범위에 대해 연구하였다. 또한 relative edge가 있을 때와 없을 때를 비교하여 가장 효율이 높은 Input Beam의 형태와 그 parameter에 대해 연구하였다.

  • PDF

Beam Shaping and Speckle Reduction in Laser Projection Display Systems Using a Vibrating Diffractive Optical Element

  • Liang, Chuanyang;Zhang, Wei;Wu, Zhihui;Rui, Dawei;Sui, Yongxin;Yang, Huaijiang
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • The laser has been regarded as the potential illumination source for the next generation of projectors. However, currently the major issues in applying the laser as an illumination source for projectors are beam shaping and laser speckle. We present a compact solution for both issues by using a vibrating diffractive optical element (DOE). The DOE is designed and fabricated, and it successfully transforms the circular Gaussian laser beam to a low speckle contrast uniform rectangular pattern. Under a vibration frequency of 150 Hz and amplitude of $200{\mu}m$, the speckle contrast value is reduced from 67.67% to 13.78%, and the ANSI uniformity is improved from 24.36% to 85.54%. The experimental results demonstrate the feasibility and potential of the proposed scheme, and the proposed method is a feasible approach to the miniaturization of laser projection display illumination systems.

Hybrid (refrctive/diffractive) lens design for the ultra-compact camera module (초소형 영상 전송 모듈용 DOE(Diffractive optical element)렌즈의 설계 및 평가)

  • Lee, Hwan-Seon;Rim, Cheon-Seog;Jo, jae-Heung;Chang, Soo;Lim, Hyun-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.240-249
    • /
    • 2001
  • A high speed ultra-compact lens with a diffractive optical element (DOE) is designed, which can be applied to mobile communication devices such as IMT2000, PDA, notebook computer, etc. The designed hybrid lens has sufficiently high performance of less than f/2.2, compact size of 3.3 mm (1st surf. to image), and wide field angle of more than 30 deg. compared with the specifications of a single lens. By proper choice of the aspheric and DOE surface which has very large negative dispersion, we can correct chromatic and high order aberrations through the optimization technique. From Seidel third order aberration theory and Sweatt modeling, the initial data and surface configurations, that is, the combination condition of the DOE and the aspherical surface are obtained. However, due to the consideration of diffraction efficiency of a DOE, we can choose only four cases as the optimization input, and present the best solution after evaluating and comparing those four cases. On the other hand, we also report dramatic improvement in optical performance by inserting another refractive lens (so-called, field flattener), that keeps the refractive power of an original DOE lens and makes the petzval sum zero in the original DOE lens system. ystem.

  • PDF

The comparison and the Analysis of the optical performances between the single and the symmetrical double DOE lenses (단매와 대칭 2매로 구성된 DOE 렌즈의 광학성능 비교 및 분석)

  • 이환선;임천석;조재홍
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.258-265
    • /
    • 2002
  • In this paper, we design single and symmetrical double lenses with DOE. The specifications are the following : Image area is 4.8 mm $\times$ 3.6 mm, F/# is 2.8 and the overall length (from first lens surface to image plane) is 6.8mm. After comparing the optical performance and characteristic values, we determine that symmetrical double lenses are superior to single lenses. Symmetrical double lenses have the merits of fewer zones, weaker flare, and smaller distortion than single lenses.

Optical system design for compact digital still camera using diffractive optical elements (회절광학소자를 이용한 컴팩트 디지털 스틸 카메라용 광학계 설계)

  • 박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • In this paper, the fundamental properties of diffractive optical element were investigated. Also, this work deals with theoretical approaches for achromatization in DOE's optical system based on thin lens theory. It is found that achromatization could be satisfied by one hybrid lens only, which is composed of a diffractive and a refractive element. In order to have compact optical system, we used the tele-photo type lens composed of a positive and a negative power elements instead of retro-focus lens. From the Gaussian brackets and Seidel aberration theory, the initial design was numerically obtained. The aberration properties of an initial design was aplanat and flat field. In order to correct the chromatic aberrations, refractive and diffractive elements were used on front element. This hybrid lens is also useful for correction of higher order aberrations. Compared to conventional design composed of refractive lenses only, this approach dramatically improved the compactness of the optical system. Finally, residual aberration balancing results in a lens with focal length of 3.89 mm and overall length of 5.19 mm, which has enough performance over an f-number of 4.0. Also, it is expected to fulfill all the requirements of a digital still camera lens. This optical system is superior to the current refractive lens system in the number of elements, weight, and aberration properties. rties.

  • PDF

A study on the Convergence of Iterative Fourier Transform Algorithm for Optimal Design of Diffractive Optical Elements (회절광학소자의 최적 설계를 위한 Iterative Fourier Transform Algorithm의 수렴성에 관한 연구)

  • Kim, Hwi;Yang, Byung-Choon;Park, Jin-Hong;Lee, Byoung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.298-311
    • /
    • 2003
  • Iterative Fourier transform algorithm, (IFTA) is tile iterative numerical algorithm for the design of the diffractive optical elements (DOE), by which the phase distribution of a DOE converges on a local optimal solution. The convergence of IFTA depends on several factors 3s initial phase distribution, the structure of the degree of freedom on the observation plane, and the values of internal parameters. In this paper, we analyze tile dependence of the convergence of IFTA on an internal parameter of IFTA, the relaxation parameter, and propose a new hybrid scheme of genetic algorithm and IFTA to obtain more accurate solution.

Design and Fabrication of Binary Diffractive Optical Elements for the Creation of Pseudorandom Dot Arrays of Uniform Brightness (균일 밝기 랜덤 도트 어레이 생성을 위한 이진 회절광학소자 설계 및 제작)

  • Lee, Soo Yeon;Lee, Jun Ho;Kim, Young-Gwang;Rhee, Hyug-Gyo;Lee, Munseob
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • In this paper, we report the design and fabrication of binary diffractive optical elements (DOEs) for random-dot-pattern projection for Schlieren imaging. We selected the binary phase level and a pitch of 10 ㎛ for the DOE, based on cost effectiveness and ease of manufacture. We designed the binary DOE using an iterative Fourier-transform algorithm with binary phase optimization. During initial optimization, we applied a computer-generated pseudorandom dot pattern of uniform intensity as a target pattern, and found significant intensity nonuniformity across the field. Based on the evaluation of the initial optimization, we weighted the target random dot pattern with Gaussian profiles to improve the intensity uniformity, resulting in the improvement of uniformity from 52.7% to 90.8%. We verified the design performance by fabricating the designed binary DOE and a beam projector, to which the same was applied. The verification confirmed that the projector produced over 10,000 random dot patterns over 430 mm × 430 mm at a distance of 5 meters, as designed, but had a slightly less uniformity of 84.5%. The fabrication errors of the DOE, mainly edge blurring and spacing errors, were strong possibilities for the difference.