• Title/Summary/Keyword: DOE(Design of Experiment)

Search Result 299, Processing Time 0.025 seconds

Multi-objective Optimization of Lower Control Arm Considering the Stability for Weight Reduction (경량화에 대한 안전성을 고려한 로우컨트롤암의 다목적 최적설계)

  • 이동화;박영철;허선철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.94-101
    • /
    • 2003
  • Recently, miniaturization and weight reduction is getting more attention due to various benefits in automotive components design. It is a trend that the design of experiment(DOE) and statical design method are frequently used for optimization. In this research, the safety of lower control arm is evaluated according to its material change form S45C to A16061 for the reduction of arm's weight. The variance analysis on the basis of structure analysis and DOE is applied to the lower control m. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering mass, stress and deflection.

A Study on Dimension Optimization of Injection-molded Automotive Bumper by Six Sigma (6시그마를 이용한 자동차 범퍼의 치수 최적화에 대한 연구)

  • Kim, Joo-Kwon;Kim, Jong-Sun;Lee, Jun-Han;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.109-116
    • /
    • 2017
  • In this study, the optimization of the overall dimensions of an automobile bumper was investigated through CAE and experiment using the Six Sigma method and design of experiment (DOE) method, respectively. Injection pressure, injection speed, injection time, cooling time, holding time, injection temperature, and holding pressure were selected as the vital parameters affecting the overall width of product through analysis of trivial many using CAE. The optimal values were determined using the DOE method, and we analyzed the improvement by applying the optimal conditions to the production process. As a result, the mean value of the overall width was close to the target value, with a deviation of 0.05mm, and the processability and I-MR control were remarkably improved. Finally, the dimension pass rate of the product improved by 20%.

A Study of the Performance on EJB Entity Bean with Value Object

  • Park, Eun-Hee;Jung, Doe-Kyun;Lee, Nam-Yong
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.637-649
    • /
    • 2001
  • ㆍ Research Method - Experimental Design ㆍWhen Entity Bean is deployed and Client request to inquire a specific information of Doctor Table, we experiment Total Time for Query Execution according to Time Measurement Operation in Client code. ㆍWe can apply the statistics for the experiment to the design of Entity Beans.(omitted)

  • PDF

Study on the Bonding Property and Strength Evaluation in Bonding Interface Joints of Dissimilar Material using Response Surface Analysis (반응표면법을 이용한 이종재질의 접합 계면부 강도평가 및 접합특성에 관한 연구)

  • Lee, Seung-Hyun;Choi, Seong-Dae;Kim, Gi-Man;Lee, Jong-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.76-82
    • /
    • 2009
  • In this papers, Study on the Bonding property and Strength Evaluation in Bonding interface Joints of Dissimilar material using DOE. We found optimal condition that uses experimental design method (Response Surface Analysis, DOE) used temperature, pressure, time on experiment factor. And we could get bonding condition and strength that break and crack do not happen in mechanical processing about united dissimilar material. And progress 3 point bending tests and verified result.

  • PDF

Performance Improvement of Sirocco Fan using Design of Experiments (실험계획법을 이용한 시로코팬의 성능향상)

  • Choi, Young-Seok;Jung, Uk-Hee;Lee, Kyoung-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.283-286
    • /
    • 2006
  • This paper presents a numerical study on the overall performance and local flow characteristics of the sirocco fan. The effects of impeller and volute shape distribution on the performance of the sirocco fan were numerically studied using a commercial CFD code and a DOE (design of experiments) software. At present, our attention was focused on the relation of the results of DOE and the performance of the sirocco fan. As a main result of the optimization, the performance of the sirocco fan was successfully improved. Also, detailed effects of geometric parameter of impeller and volute in the sirocco fan were discussed.

  • PDF

Structural Design for 2kW Class Wind Turbine Blade by using Design of Experiment (실험계획법을 이용한 2kW급 풍력발전용 블레이드에 대한 구조설계)

  • Lee, Seung-Pyo;Kang, Ki-Weon;Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • In this paper, structural design for 2kW class composite blade is performed by using design of experiment(DOE). A full factorial design is applied to meet the design specifications at the manufacturing process. The analysis of variance(ANOVA) is made in order to determine the significance of effects in an analysis. Structural analysis by using of commercial software ABAQUS is performed to compute the displacement and safety factor of filament wound composite blade. The results show that the proposed method is suitable to analyze the factors at the design of wind turbine blade.

Design and Performance Analysis of Propeller for Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3의 프로펠러 설계 및 성능해석)

  • Park, Donghun;Hwang, Seungjae;Kim, Sanggon;Kim, Cheolwan;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.759-768
    • /
    • 2016
  • Design and performance analysis of propeller for solar-powered HALE UAV, EAV-3 are conducted. Experiment points of design variables are obtained by using Design of Experiment(DOE) and Kriging meta-model is generated for objective and constraints function. The geometry of propeller is designed by evaluating the response surface with requirement and restrictions. The validity of the design is verified by meta-model based optimization. Computational analyses are carried out by using commercial CFD code and the results are compared with those from a design code and wind tunnel test. The results showed good agreement with predictions of the design code at the design altitude. Also, it is confirmed that the blockage effect due to the measurement device and support strut is included in the test data and the results including this effect compare well with the test data.

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

Optimizing Design of Side Airbag Inflator using DOE Method (실험계획법을 이용한 측면 에어백 인플레이터 최적 설계)

  • Kim, Byeong-Woo;Hu, Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1189-1195
    • /
    • 2011
  • For side airbag, the pipe type inflators have been wide used while the disk type inflators have been used for front airbag. For helping to prevent injury and death the airbag inflator system should be design with great care. The present study deal with optimizing the design of side airbag inflator by finite element analysis and design of experiment method. An optimization process was integrated to determine the optimum design variable values related to the side airbag inflator. Free shape optimization method has been carried out to find a optimal shape on an side airbag inflator model. Optimization of the air bag inflator was successfully developed using Sharpe optimization was carried out to find a new geometry. The improved results compared to the base design specification were achieved from design of experiment and optimization.

Six Sigma based on Robust Design of Gripper for LCD Transfer System (LCD 이송장치의 그립퍼부 시그마 기반 강건설계)

  • Chung W.J.;Jung D.W.;Kim H.J.;Yoon Y.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.361-362
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD (Liquid Crystal Display) transfer system. In this paper, the 1st DOE (Design of Experiment) is conducted to find out main-effect factors fur the design of gripper part. Thirty-six experiments are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The 2nd DOE is conducted to obtain RSM (Response Surface Method) equation. The CCD (Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level reliability, the standard deviations of design parameters are shown to be controlled within 5% of average design value.

  • PDF