• Title/Summary/Keyword: DOA Estimation

Search Result 123, Processing Time 0.024 seconds

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

Performance analysis of DOA estimation and beamforming in 3-dimensional array antenna for GPS receiver (GPS 수신기를 위한 3 차원 배열 안테나의 도래각 추정 및 빔 형성 성능 분석)

  • Lee, Chong-Hyun;Kim, Suk-Joong;Lim, Seung-Gag
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.88-94
    • /
    • 2007
  • This paper deals with the performance analysis of 3-dimensional array antenna by DOA estimation and beamforming in GPS receiver for performance improvement by interference elimination. The array antenna in GPS receiver can improve the system performance by estimating DOA of arriving signal direction, making the main beam for desired direction and elimate the jammer signal by nulling while keeping the GPS signal direction by spatial filtering. In this paper, we propose five types of 3-dimensional array antenna and analyze the estimation error via MUSIC algorithm which is used for the estimation of DOA of arrived signal and beamforming performance. In analyzing DOA performance, we measure DOA estimation error, while in analyzing beamformig performance, we measure BER. In beamforming performance analyzing, we use various jammer power and the existence of GPS signal and angle spread. By performing through the computer simulation, Curved (B) 7-element antenna in proposed 3-dimensional array antenna exhibits the superior performance in the DOA estimation, estimation error, BER characteristic and angle spread compared to the rest four array antenna types.

Root-assisted MUSIC algorithm for the efficient DOA estimation in Multi-Jammer Environments (다중 재머 환경에서 DOA 추정 성능 개선을 위한 Root-assisted MUSIC 알고리즘)

  • Lee, Ju Hyun;Choi, Heon Ho;Choi, Yun Sub;Lim, Deok Won;Park, Chansik;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.386-395
    • /
    • 2013
  • This paper proposes a root-assisted MUSIC algorithm which uses a combination of the MUSIC and the root-MUSIC algorithm. This algorithm consists of two steps. Firstly, a coarse DOA is computed by the root-MUSIC algorithm. Secondly, a precise DOA estimation is carried out by the MUSIC algorithm in the reduced searching range. This paper analyzes the accuracy and the resolution performance of the proposed DOA estimation method using a software simulation platform.

A Study of DOA estimation based on TDOA/AOA for jammer localization (전파위협원 위치결정을 위한 TDOA/AOA 기반의 DOA 추정 기법 연구)

  • Choi, Heon-Ho;Jin, Mi-Hyun;Lim, Deok-Won;Nam, Gi-Wook;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.962-969
    • /
    • 2011
  • This paper proposes the DOA estimation method based on TDOA/AOA for jammer localization method in GBAS environment. The proposed method can effectively estimate DOA of jamming signal as the range for DOA estimation is reduced remarkably by using DOP and 1st approximate solution using TDOA measurements only. Through the proposed method, more precise DOA can be obtained and the performance of jammer localization is increased simultaneously. Also, the effectiveness of proposed method will be confirmed through the simulated results.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Joint Estimation of TOA and DOA in IR-UWB System Using Sparse Representation Framework

  • Wang, Fangqiu;Zhang, Xiaofei
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.460-468
    • /
    • 2014
  • This paper addresses the problem of joint time of arrival (TOA) and direction of arrival (DOA) estimation in impulse radio ultra-wideband systems with a two-antenna receiver and links the joint estimation of TOA and DOA to the sparse representation framework. Exploiting this link, an orthogonal matching pursuit algorithm is used for TOA estimation in the two antennas, and then the DOA parameters are estimated via the difference in the TOAs between the two antennas. The proposed algorithm can work well with a single measurement vector and can pair TOA and DOA parameters. Furthermore, it has better parameter-estimation performance than traditional propagator methods, such as, estimation of signal parameters via rotational invariance techniques algorithms matrix pencil algorithms, and other new joint-estimation schemes, with one single snapshot. The simulation results verify the usefulness of the proposed algorithm.

Estimation Technique of Direction of Arrival for Location Service in the next Generation Mobile Communication System (차세대 이동통신시스템에서 Location Service를 위한 신호도착방향 추정기법)

  • 이성로;최명수;김철희;안동순;김종화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.284-293
    • /
    • 2003
  • Location service is usually provided by the GPS method using satellites. In the next generation mobile communication systems which use smart antennas, location service can be accomplished using direction of arrival (DOA) estimation techniques. In this paper, we propose a DOA estimation technique for the location service of the next generation mobile communication systems and investigate the validity of the proposed technique through computer simulation. First, DOA estimation problems of distributed sources are considered using vortical and horizontal array processors which are orthogonal to each other. The DOA of the elevation angle is estimated by the vertical array processor and then that of the azimuth angle is estimated by the horizontal array processor. Finally, the procedures of the location service for specific signal sources using three smart antennas are exhibited by computer simulation to show that the proposed DOA estimation technique can be used for the location service in the next generation mobile communication systems.

Performance Analysis of MUSIC-Based Jammer DOA Estimation Technique for a Misaligned Antenna Array

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • As a countermeasure against the threat of jamming which can disrupt operation of the Global Positioning System (GPS) receivers, various kinds of technique to estimate the Direction-Of-Arrivals (DOAs) of incoming jamming signals have been widely studied, and among them, the MUltiple SIgnal Classification (MUSIC) algorithm is known to provide very high resolution. However, since the previous studies regarding the MUSIC algorithm does not consider the orientation of each antenna element of antenna arrays, there is a possibility that DOA estimation performance degrades in the case of a misaligned antenna array whose antenna elements are not oriented along the same direction. As an effort to solve this problem, there exists a previous work which presents an MUSIC-based method for DOA estimation. However, the error between the real and measured values of each antenna orientation is not taken into consideration. Therefore, in this paper, the effect of the aforementioned error on the DOA estimation performance in the case of a misaligned antenna array is analyzed by simulations.

Highly Efficient and Precise DOA Estimation Algorithm

  • Yang, Xiaobo
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.293-301
    • /
    • 2022
  • Direction of arrival (DOA) estimation of space signals is a basic problem in array signal processing. DOA estimation based on the multiple signal classification (MUSIC) algorithm can theoretically overcome the Rayleigh limit and achieve super resolution. However, owing to its inadequate real-time performance and accuracy in practical engineering applications, its applications are limited. To address this problem, in this study, a DOA estimation algorithm with high parallelism and precision based on an analysis of the characteristics of complex matrix eigenvalue decomposition and the coordinate rotation digital computer (CORDIC) algorithm is proposed. For parallel and single precision, floating-point numbers are used to construct an orthogonal identity matrix. Thus, the efficiency and accuracy of the algorithm are guaranteed. Furthermore, the accuracy and computation of the fixed-point algorithm, double-precision floating-point algorithm, and proposed algorithm are compared. Without increasing complexity, the proposed algorithm can achieve remarkably higher accuracy and efficiency than the fixed-point algorithm and double-precision floating-point calculations, respectively.

Mutual Coupling Compensation for an Antenna Array and Direction Of Arrival Estimation Using ESPRIT (ESPRIT 알고리듬을 이용한 안테나 배열의 상호결합 보상과 도래각 추정)

  • Hong, Jeong-Geun;Ahn, Woo-Hyun;Seo, Bo-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.37-42
    • /
    • 2013
  • In this paper, we propose a compensation method of a non-ideal antenna array and a computationally efficient estimation method of the direction of arrival (DOA) for the antenna array. For DOA estimation, an antenna array is essential. By using the phase difference between the output signals of antennas, we can derive the DOA. In practice, however, mutual coupling between the elements of an antenna array change the beam pattern of each element and degrade the performance of DOA estimation. In the proposed method, we first estimate the DOA for the mid-subarray of the array, where all elements undergo relatively same coupling effect. We use the estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm to estimate the DOA. Then, we expand the array based on the estimated DOA by compensating the coupling effect. Simulation results show that the proposed method is effective when jamming to noise power ratio (JNR)is relative low.