• Title/Summary/Keyword: DO Sensor

Search Result 1,224, Processing Time 0.024 seconds

Quantitative Estimation of Shoreline Changes Using Multi-sensor Datasets: A Case Study for Bangamoeri Beaches (다중센서를 이용한 해안선의 정량적 변화 추정: 방아머리 해빈을 중심으로)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.693-703
    • /
    • 2019
  • Long-term coastal topographical data is critical for analyzing temporal and spatial changes in shorelines. Especially understanding the change trends is essential for future coastal management. For this research, in the data preparation, we obtained digital aerial images, terrestrial laser scanning data and UAV images in the year of 2009. 2018 and 2019 respectively. Also tidal observation data obtained by the Korea Hydrographic and Oceanographic Agency were used for Bangamoeri beach located in Ansan, Gyeonggi-do. In the process of it, we applied the photogrammetric technique to extract the coastline of 4.40 m from the stereo images of 2009 by stereoscopic viewing. In 2018, digital elevation model was generated by using the raw data obtained from the laser scanner and the corresponding shoreline was semi-automatically extracted. In 2019, a digital elevation model was generated from the drone images to extract the coastline. Finally the change rate of shorelines was calculated using Digital Shoreline Analysis System. Also qualitative analysis was presented.

Estimation of Chinese Cabbage Growth by RapidEye Imagery and Field Investigation Data

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.556-563
    • /
    • 2015
  • Chinese cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. Remote sensing has long been used as a tool to extract plant growth, cultivated area and yield information for many crops, but little research has been conducted on Chinese cabbage. This study refers to the derivation of simple Chinese cabbage growth prediction equation by using RapidEye derived vegetation index. Daesan-myeon area in Gochang-gun, Jeollabuk-do, Korea is one of main producing district of Chinese cabbage. RapidEye multi-spectral imagery was taken on the Daesan-myeon five times from early September to late October during the Chinese cabbage growing season. Meanwhile, field reflectance spectra and five plant growth parameters, including plant height (P.H.), plant diameter (P.D.), leaf height (L.H.), leaf length (L.L.) and leaf number (L.N.), were measured for about 20 plants (ten plants per plot) for each ground survey. The normalized difference vegetation index (NDVI) for each of the 20 plants was measured using an active plant growth sensor (Crop $Circle^{TM}$) at the same time. The results of correlation analysis between the vegetation indices and Chinese cabbage growth data showed that NDVI was the most suited for monitoring the L.H. (r=0.958~0.978), L.L. (r=0.950~0.971), P.H. (r=0.887~0.982), P.D. (r=0.855~0.932) and L.N. (r=0.718~0.968). Retrieval equations were developed for estimating Chinese cabbage growth parameters using NDVI. These results obtained using the NDVI is effective provided a basis for establishing retrieval algorithm for the biophysical properties of Chinese cabbage. These results will also be useful in determining the RapidEye multi-spectral imagery necessary to estimate parameters of Chinese cabbage.

A Study on the Smart Filter System for External Environment Recognition (외부환경 인식용 스마트 필터 시스템에 대한 연구)

  • Seo, Do-Won;Yoon, Keun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.271-278
    • /
    • 2021
  • This paper is a study on the implementation of smart filter system that recognizes the external environment and automatically removes pollutants according to pollution level. Recently, the occurrence of various pollutants in indoor and outdoor space has adversely affected the human body. Especially, various fine dust generated in the atmosphere becomes worse in closed residential space or office space. Although air pollution can be temporary lowered through ventilation, it is difficult to respond to fine dust changes in real time, and such problems become serious in the space where many people reside, such as at home or industry. Therefore, it is necessary to measure the pollution level of fine dust inside the residential space in real time and to reduce the pollution of indoor ventilation through automatic ventilation with the outside. To improve these problems, this paper proposes the implementation of smart filter system for external environment recognition. The structure of smart filter system that automatically measures air quality inside and outside, removes pollutants, implements the function, and confirms the operability by manufacturing prototypes. Finally, the effectiveness of the smart filter system for solving fine dust problems was examined.

GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea (특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출)

  • Lee, Kye Dong;Yoon, Jong Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • The Ministry of Land, Infrastructure and Transport is planning to launch CAS-500 (Compact Advanced Satellite 500) 1 and 2 in 2019 and 2020. Satellite image information collected through CAS-500 can be used in various fields such as global environmental monitoring, topographic map production, analysis for disaster prevention. In order to utilize in various fields like this, it is important to get the location accuracy of the satellite image. In order to establish the precise geometry of the satellite image, it is necessary to establish a precise sensor model using the GCP (Ground Control Point). In order to utilize various fields, step - by - step automation for orthoimage construction is required. To do this, a database of satellite image GCP chip should be structured systematically. Therefore, in this study, we will analyze various techniques for automatic GCP extraction for precise geometry of satellite images.

An Unified Spatial Index and Visualization Method for the Trajectory and Grid Queries in Internet of Things

  • Han, Jinju;Na, Chul-Won;Lee, Dahee;Lee, Do-Hoon;On, Byung-Won;Lee, Ryong;Park, Min-Woo;Lee, Sang-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.83-95
    • /
    • 2019
  • Recently, a variety of IoT data is collected by attaching geosensors to many vehicles that are on the road. IoT data basically has time and space information and is composed of various data such as temperature, humidity, fine dust, Co2, etc. Although a certain sensor data can be retrieved using time, latitude and longitude, which are keys to the IoT data, advanced search engines for IoT data to handle high-level user queries are still limited. There is also a problem with searching large amounts of IoT data without generating indexes, which wastes a great deal of time through sequential scans. In this paper, we propose a unified spatial index model that handles both grid and trajectory queries using a cell-based space-filling curve method. also it presents a visualization method that helps user grasp intuitively. The Trajectory query is to aggregate the traffic of the trajectory cells passed by taxi on the road searched by the user. The grid query is to find the cells on the road searched by the user and to aggregate the fine dust. Based on the generated spatial index, the user interface quickly summarizes the trajectory and grid queries for specific road and all roads, and proposes a Web-based prototype system that can be analyzed intuitively through road and heat map visualization.

Walkability Evaluation for Elderly People using Wearable Sensing (웨어러블 센싱 기반 고령자를 위한 보행 편의성 평가)

  • Yang, Kanghyeok;Hwang, Sungjoo;Kim, Hyunsoo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.7
    • /
    • pp.119-126
    • /
    • 2019
  • The active living of the elderly leads to improve their lives and enhance social networks. In the view of the active living, the walkability is an essential factor for the elderly's daily life. To support the active living, making age-friendly environment is important. Considering that the elderly mainly carry out activities through walking, making the age-friendly walking environment is a preliminary action. The existing studies applied various methods such as surveys by experts. In spite of the benefits in theirs, there is still a limitation that current walkability measurement methods did not incorporate the actual elderly's walking activity. Thus, the purposes of this study is to measure the elderly's walking quantitatively using a wearable sensor, and to investigate the feasibility of comparing several walking environments based on the data collected from the actual elderly's walking. To do this, experiment was conducted in four types environments with 22 senior subjects. The walkability was measured by walking stability represented quantitatively as Maximum Lyapunov Exponent (MaxLE). Through the experiment results, it was confirmed that the stability of the elderly walking was different according to the walking environment, which also meant that bodily responses (walking stability) is highly related to walkability. The results will provide an opportunity for the continuous diagnosis of walking environments, thereby enhancing the active living of the elderly.

Recovery-Key Attacks against TMN-family Framework for Mobile Wireless Networks

  • Phuc, Tran Song Dat;Shin, Yong-Hyeon;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2148-2167
    • /
    • 2021
  • The proliferation of the Internet of Things (IoT) technologies and applications, especially the rapid rise in the use of mobile devices, from individuals to organizations, has led to the fundamental role of secure wireless networks in all aspects of services that presented with many opportunities and challenges. To ensure the CIA (confidentiality, integrity and accessibility) security model of the networks security and high efficiency of performance results in various resource-constrained applications and environments of the IoT platform, DDO-(data-driven operation) based constructions have been introduced as a primitive design that meet the demand of high speed encryption systems. Among of them, the TMN-family ciphers which were proposed by Tuan P.M., Do Thi B., etc., in 2016, are entirely suitable approaches for various communication applications of wireless mobile networks (WMNs) and advanced wireless sensor networks (WSNs) with high flexibility, applicability and mobility shown in two different algorithm selections, TMN64 and TMN128. The two ciphers provide strong security against known cryptanalysis, such as linear attacks and differential attacks. In this study, we demonstrate new probability results on the security of the two TMN construction versions - TMN64 and TMN128, by proposing efficient related-key recovery attacks. The high probability characteristics (DCs) are constructed under the related-key differential properties on a full number of function rounds of TMN64 and TMN128, as 10-rounds and 12-rounds, respectively. Hence, the amplified boomerang attacks can be applied to break these two ciphers with appropriate complexity of data and time consumptions. The work is expected to be extended and improved with the latest BCT technique for better cryptanalytic results in further research.

Implementation of CNN Model for Classification of Sitting Posture Based on Multiple Pressure Distribution (다중 압력분포 기반의 착석 자세 분류를 위한 CNN 모델 구현)

  • Seo, Ji-Yun;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Musculoskeletal disease is often caused by sitting down for long period's time or by bad posture habits. In order to prevent musculoskeletal disease in daily life, it is the most important to correct the bad sitting posture to the right one through real-time monitoring. In this study, to detect the sitting information of user's without any constraints, we propose posture measurement system based on multi-channel pressure sensor and CNN model for classifying sitting posture types. The proposed CNN model can analyze 5 types of sitting postures based on sitting posture information. For the performance assessment of posture classification CNN model through field test, the accuracy, recall, precision, and F1 of the classification results were checked with 10 subjects. As the experiment results, 99.84% of accuracy, 99.6% of recall, 99.6% of precision, and 99.6% of F1 were verified.

Analysis of User Experience for the Development of Smart Golf-wear (스마트 골프웨어 개발을 위한 사용자경험 분석)

  • Sin, Sunmi;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2021
  • This study investigates and analyzes user preferences for golf wear with a sense of wear and smart function for the development of smart golf wear based on user convenience. A survey was conducted on 124 males in the age range of 40-60s that consisted of professional golfers, amateur golfers and the public with golf experience (such as major golf consumers) from August 1 to August 30, 2019 (IRB NO. 1040198-190617-HR-057-03); consequently, a 117 copies were accepted for analysis. The findings are as follows. The elbow (4.3%) of golf wear is unsatisfactory. The important part of the golf swing motion is the shoulder (39.3)>, elbow (30.8%)>, and wrist (6.8%). In addition, the unsatisfactory wearing of golf wear due to golf swing movements indicated that the shoulder or elbow area was pulled or the bottom of the top was raised during the back swing movements. The survey results on the expected discomfort when wearing smart wear are 'discomfort of obstruction when wearing' (53.8%), 'discomfort of washing' (17.1%), and 'weight of attached machine' (13.7%). Opinions such as 'Will not feel good when the sensor is attached' were investigated. The examination of the preference for golf wear equipped with smart functions indicated that a posture correction function to correct the golf swing posture is the most desired quality that is also considered important when correcting posture.

Study on Traveling Characteristics of Straight Automatic Steering Devices for Drivable Agricultural Machinery (승용형 농기계용 직진 자동조향장치 주행특성 연구)

  • Won, Jin-ho;Jeon, Jintack;Hong, Youngki;Yang, Changju;Kim, Kyoung-chul;Kwon, Kyung-do;Kim, Gookhwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2022
  • This paper introduces an automatic steering system for straight traveling capable of being mounted on drivable agricultural machinery which user can handle it such as a tractor, a transplant, etc. The modular automatic steering device proposed in the paper is composed of RTK GNSS, IMU, HMI, hydraulic valve, and wheel sensor. The path generation method of the automatic steering system is obtained from two location information(latitude and longitude on each point) measured by GNSS in advance. From HMI, a straight path(AB line) can be created by connecting latitude and longitude on each point and the device makes the machine able to follow the path. During traveling along the reference path, it acquires the real time position data every sample time(0.1s), compares the reference with them and calculates the lateral deviation. The values of deviation are used to control the steering angle of the machine using hydraulic valve mounted on the axle of front wheel. In this paper, Pure Pursuit algorithm is applied used in autonomous vehicles frequently. For the analysis of traveling characteristics, field tests were executed about these conditions: velocity of 2, 3, 4km/h which is applied to general agricultural work and ground surface of solid(asphalt) and weak condition(soil) such as farmland. In the case of weak ground state, two experiments were executed about no-load(without work) and load(with work such as plowing). The maximum average deviations were presented 2.44cm, 7.32cm, and 11.34cm during traveling on three ground conditions : asphalt, soil without load and with load(plowing).