• Title/Summary/Keyword: DNN model

Search Result 235, Processing Time 0.021 seconds

Query-Efficient Black-Box Adversarial Attack Methods on Face Recognition Model (얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법)

  • Seo, Seong-gwan;Son, Baehoon;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1081-1090
    • /
    • 2022
  • The face recognition model is used for identity recognition of smartphones, providing convenience to many users. As a result, the security review of the DNN model is becoming important, with adversarial attacks present as a well-known vulnerability of the DNN model. Adversarial attacks have evolved to decision-based attack techniques that use only the recognition results of deep learning models to perform attacks. However, existing decision-based attack technique[14] have a problem that requires a large number of queries when generating adversarial examples. In particular, it takes a large number of queries to approximate the gradient. Therefore, in this paper, we propose a method of generating adversarial examples using orthogonal space sampling and dimensionality reduction sampling to avoid wasting queries that are consumed to approximate the gradient of existing decision-based attack technique[14]. Experiments show that our method can reduce the perturbation size of adversarial examples by about 2.4 compared to existing attack technique[14] and increase the attack success rate by 14% compared to existing attack technique[14]. Experimental results demonstrate that the adversarial example generation method proposed in this paper has superior attack performance.

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

Improvement of PM10 Forecasting Performance using DNN and Secondary Data (DNN과 2차 데이터를 이용한 PM10 예보 성능 개선)

  • Yu, SukHyun;Jeon, YoungTae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1187-1198
    • /
    • 2019
  • In this study, we propose a new $PM_{10}$ forecasting model for Seoul region using DNN(Deep Neural Network) and secondary data. The previous numerical and Julian forecast model have been developed using primary data such as weather and air quality measurements. These models give excellent results for accuracy and false alarms, but POD is not good for the daily life usage. To solve this problem, we develop four secondary factors composed with primary data, which reflect the correlations between primary factors and high $PM_{10}$ concentrations. The proposed 4 models are A(Anomaly), BT(Back trajectory), CB(Contribution), CS(Cosine similarity), and ALL(model using all 4 secondary data). Among them, model ALL shows the best performance in all indicators, especially the PODs are improved.

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.

A Comparative Study on the Performance of Air Quality Prediction Model Based on DNN and LSTM (DNN과 LSTM 기반의 대기질 예측 모델 성능 비교 연구)

  • Jo, Sung-Jae;Kim, Junsuk;Kim, Sung-Hee;Youn, Joosang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.577-579
    • /
    • 2020
  • 최근 인공지능을 활용한 대기질 예측 모델 개발 연구가 활발히 진행 중이다. 특히 시계열 데이터 기반 예측 시스템 개발에 장점을 가진 DNN, LSTM 알고리즘을 활용한 다양한 예측 시스템이 제안되고 있다. 본 논문에서는 LSTM을 활용한 모델과 Fully-Connected 기반의 DNN 모델을 활용한 대기질 예측 시스템을 개발하고 두 모델의 예측 정확도를 비교한다. 성능 평가 결과를 보면 LSTM 모델이 DNN 모델보다 모든 면에서 좋은 결과를 보여줬다. 그리고 이산화황(SO2), 이산화질소(NO2), 초미세먼지 (PM2.5)에 대해서는 그 차이가 두드러지게 나타났다.

A Study on Prediction of PM2.5 Concentration Using DNN (Deep Neural Network를 활용한 초미세먼지 농도 예측에 관한 연구)

  • Choi, Inho;Lee, Wonyoung;Eun, Beomjin;Heo, Jeongsook;Chang, Kwang-Hyeon;Oh, Jongmin
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.2
    • /
    • pp.83-94
    • /
    • 2022
  • In this study, DNN-based models were learned using air quality determination data for 2017, 2019, and 2020 provided by the National Measurement Network (Air Korea), and this models evaluated using data from 2016 and 2018. Based on Pearson correlation coefficient 0.2, four items (SO2, CO, NO2, PM10) were initially modeled as independent variables. In order to improve the accuracy of prediction, monthly independent modeling was carried out. The error was calculated by RMSE (Root Mean Square Error) method, and the initial model of RMSE was 5.78, which was about 46% betterthan the national moving average modelresult (10.77). In addition, the performance improvement of the independent monthly model was observed in months other than November compared to the initial model. Therefore, this study confirms that DNN modeling was effective in predicting PM2.5 concentrations based on air pollutants concentrations, and that the learning performance of the model could be improved by selecting additional independent variables.

Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation (가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발)

  • Lee, Dong-Gun;Yu, Jeong-Yeon;Choi, Ji-Yeol;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.13-24
    • /
    • 2023
  • To investigate the stability of temporary retaining walls during excavation, it is essential to develop reverse analysis technologies capable of precisely evaluating the properties of the ground and a learning model that can assess stability by analyzing real-time data. In this study, we targeted excavation sites where the C.I.P method was applied. We developed a Deep Neural Network (DNN) model capable of evaluating the stability of the retaining wall, and estimated the physical properties of the ground being excavated using a Differential Evolution Algorithm. We performed reverse analysis on a model composed of a two-layer ground for the applicability analysis of the Differential Evolution Algorithm. The results from this analysis allowed us to predict the properties of the ground, such as the elastic modulus, cohesion, and internal friction angle, with an accuracy of 97%. We analyzed 30,000 cases to construct the training data for the DNN model. We proposed stability evaluation grades for each assessment factor, including anchor axial force, uneven subsidence, wall displacement, and structural stability of the wall, and trained the data based on these factors. The application analysis of the trained DNN model showed that the model could predict the stability of the retaining wall with an average accuracy of over 94%, considering factors such as the axial force of the anchor, uneven subsidence, displacement of the wall, and structural stability of the wall.

Prediction of Upset Length and Upset Time in Inertia Friction Welding Process Using Deep Neural Network (관성 마찰용접 공정에서 심층 신경망을 이용한 업셋 길이와 업셋 시간의 예측)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.47-56
    • /
    • 2019
  • A deep neural network (DNN) model was proposed to predict the upset in the inertia friction welding process using a database comprising results from a series of FEM analyses. For the database, the upset length, upset beginning time, and upset completion time were extracted from the results of the FEM analyses obtained with various of axial pressure and initial rotational speed. A total of 35 training sets were constructed to train the proposed DNN with 4 hidden layers and 512 neurons in each layer, which can relate the input parameters to the welding results. The mean of the summation of squared error between the predicted results and the true results can be constrained to within 1.0e-4 after the training. Further, the network model was tested with another 10 sets of welding input parameters and results for comparison with FEM. The test showed that the relative error of DNN was within 2.8% for the prediction of upset. The results of DNN application revealed that the model could effectively provide welding results with respect to the exactness and cost for each combination of the welding input parameters.

DNN-based LTE Signal Propagation Modelling for Positioning Fingerprint DB Generation

  • Kwon, Jae Uk;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • In this paper, we propose a signal propagation modeling technique for generating a positioning fingerprint DB based on Long Term Evolution (LTE) signals. When a DB is created based on the location-based signal information collected in an urban area, gaps in the DB due to uncollected areas occur. The spatial interpolation method for filling the gaps has limitations. In addition, the existing gap filling technique through signal propagation modeling does not reflect the signal attenuation characteristics according to directions occurring in urban areas by considering only the signal attenuation characteristics according to distance. To solve this problem, this paper proposes a Deep Neural Network (DNN)-based signal propagation functionalization technique that considers distance and direction together. To verify the performance of this technique, an experiment was conducted in Seocho-gu, Seoul. Based on the acquired signals, signal propagation characteristics were modeled for each method, and Root Mean Squared Errors (RMSE) was calculated using the verification data to perform comparative analysis. As a result, it was shown that the proposed technique is improved by about 4.284 dBm compared to the existing signal propagation model. Through this, it can be confirmed that the DNN-based signal propagation model proposed in this paper is excellent in performance, and it is expected that the positioning performance will be improved based on the fingerprint DB generated through it.

Predicting the Real Estate Price Index Using Deep Learning (딥 러닝을 이용한 부동산가격지수 예측)

  • Bae, Seong Wan;Yu, Jung Suk
    • Korea Real Estate Review
    • /
    • v.27 no.3
    • /
    • pp.71-86
    • /
    • 2017
  • The purpose of this study was to apply the deep running method to real estate price index predicting and to compare it with the time series analysis method to test the possibility of its application to real estate market forecasting. Various real estate price indices were predicted using the DNN (deep neural networks) and LSTM (long short term memory networks) models, both of which draw on the deep learning method, and the ARIMA (autoregressive integrated moving average) model, which is based on the time seies analysis method. The results of the study showed the following. First, the predictive power of the deep learning method is superior to that of the time series analysis method. Second, among the deep learning models, the predictability of the DNN model is slightly superior to that of the LSTM model. Third, the deep learning method and the ARIMA model are the least reliable tools for predicting the housing sales prices index among the real estate price indices. Drawing on the deep learning method, it is hoped that this study will help enhance the accuracy in predicting the real estate market dynamics.