• Title/Summary/Keyword: DNN모델

Search Result 184, Processing Time 0.04 seconds

Development of Deep Learning Based Deterioration Prediction Model for the Maintenance Planning of Highway Pavement (도로포장의 유지관리 계획 수립을 위한 딥러닝 기반 열화 예측 모델 개발)

  • Lee, Yongjun;Sun, Jongwan;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.34-43
    • /
    • 2019
  • The maintenance cost for road pavement is gradually increasing due to the continuous increase in road extension as well as increase in the number of old routes that have passed the public period. As a result, there is a need for a method of minimizing costs through preventative grievance preventive maintenance requires the establishment of a strategic plan through accurate prediction of road pavement. Hence, In this study, the deep neural network(DNN) and the recurrent neural network(RNN) were used in order to develop the expressway pavement damage prediction model. A superior model among these two network models was then suggested by comparing and analyzing their performance. In order to solve the RNN's vanishing gradient problem, the LSTM (Long short-term memory) circuits which are a more complicated form of the RNN structure were used. The learning result showed that the RMSE value of the RNN-LSTM model was 0.102 which was lower than the RMSE value of the DNN model, indicating that the performance of the RNN-LSTM model was superior. In addition, high accuracy of the RNN-LSTM model was verified through the comparison between the estimated average road pavement condition and the actually measured road pavement condition of the target section over time.

Indoor Space Recognition using Super-pixel and DNN (DNN과 슈퍼픽셀을 이용한 실내 공간 인식)

  • Kim, Kisang;Choi, Hyung-Il
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, we propose an indoor-space recognition using DNN and super-pixel. In order to recognize the indoor space from the image, segmentation process is required for dividing an image Super-pixel is performed algorithm which can be divided into appropriate sizes. In order to recognize each segment, features are extracted using a proposed method. Extracted features are learned using DNN, and each segment is recognized using the DNN model. Experimental results show the performance comparison between the proposed method and existing algorithms.

Bit Operation Optimization and DNN Application using GPU Acceleration (GPU 가속기를 통한 비트 연산 최적화 및 DNN 응용)

  • Kim, Sang Hyeok;Lee, Jae Heung
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1314-1320
    • /
    • 2019
  • In this paper, we propose a new method for optimizing bit operations and applying them to DNN(Deep Neural Network) in software environment. As a method for this, we propose a packing function for bitwise optimization and a masking matrix multiplication operation for application to DNN. The packing function converts 32-bit real value to 2-bit quantization value through threshold comparison operation. When this sequence is over, four 32-bit real values are changed to one 8-bit value. The masking matrix multiplication operation consists of a special operation for multiplying the packed weight value with the normal input value. And each operation was then processed in parallel using a GPU accelerator. As a result of this experiment, memory saved about 16 times than 32-bit DNN Model. Nevertheless, the accuracy was within 1%, similar to the 32-bit model.

Performance Comparison of Neural Network and Gradient Boosting Machine for Dropout Prediction of University Students

  • Hyeon Gyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.49-58
    • /
    • 2023
  • Dropouts of students not only cause financial loss to the university, but also have negative impacts on individual students and society together. To resolve this issue, various studies have been conducted to predict student dropout using machine learning. This paper presents a model implemented using DNN (Deep Neural Network) and LGBM (Light Gradient Boosting Machine) to predict dropout of university students and compares their performance. The academic record and grade data collected from 20,050 students at A University, a small and medium-sized 4-year university in Seoul, were used for learning. Among the 140 attributes of the collected data, only the attributes with a correlation coefficient of 0.1 or higher with the attribute indicating dropout were extracted and used for learning. As learning algorithms, DNN (Deep Neural Network) and LightGBM (Light Gradient Boosting Machine) were used. Our experimental results showed that the F1-scores of DNN and LGBM were 0.798 and 0.826, respectively, indicating that LGBM provided 2.5% better prediction performance than DNN.

LFMMI-based acoustic modeling by using external knowledge (External knowledge를 사용한 LFMMI 기반 음향 모델링)

  • Park, Hosung;Kang, Yoseb;Lim, Minkyu;Lee, Donghyun;Oh, Junseok;Kim, Ji-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.607-613
    • /
    • 2019
  • This paper proposes LF-MMI (Lattice Free Maximum Mutual Information)-based acoustic modeling using external knowledge for speech recognition. Note that an external knowledge refers to text data other than training data used in acoustic model. LF-MMI, objective function for optimization of training DNN (Deep Neural Network), has high performances in discriminative training. In LF-MMI, a phoneme probability as prior probability is used for predicting posterior probability of the DNN-based acoustic model. We propose using external knowledges for training the prior probability model to improve acoustic model based on DNN. It is measured to relative improvement 14 % as compared with the conventional LF-MMI-based model.

Query-Efficient Black-Box Adversarial Attack Methods on Face Recognition Model (얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법)

  • Seo, Seong-gwan;Son, Baehoon;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1081-1090
    • /
    • 2022
  • The face recognition model is used for identity recognition of smartphones, providing convenience to many users. As a result, the security review of the DNN model is becoming important, with adversarial attacks present as a well-known vulnerability of the DNN model. Adversarial attacks have evolved to decision-based attack techniques that use only the recognition results of deep learning models to perform attacks. However, existing decision-based attack technique[14] have a problem that requires a large number of queries when generating adversarial examples. In particular, it takes a large number of queries to approximate the gradient. Therefore, in this paper, we propose a method of generating adversarial examples using orthogonal space sampling and dimensionality reduction sampling to avoid wasting queries that are consumed to approximate the gradient of existing decision-based attack technique[14]. Experiments show that our method can reduce the perturbation size of adversarial examples by about 2.4 compared to existing attack technique[14] and increase the attack success rate by 14% compared to existing attack technique[14]. Experimental results demonstrate that the adversarial example generation method proposed in this paper has superior attack performance.

Priority-based Multi-DNN scheduling framework for autonomous vehicles (자율주행차용 우선순위 기반 다중 DNN 모델 스케줄링 프레임워크)

  • Cho, Ho-Jin;Hong, Sun-Pyo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.368-376
    • /
    • 2021
  • With the recent development of deep learning technology, autonomous things technology is attracting attention, and DNNs are widely used in embedded systems such as drones and autonomous vehicles. Embedded systems that can perform large-scale operations and process multiple DNNs for high recognition accuracy without relying on the cloud are being released. DNNs with various levels of priority exist within these systems. DNNs related to the safety-critical applications of autonomous vehicles have the highest priority, and they must be handled first. In this paper, we propose a priority-based scheduling framework for DNNs when multiple DNNs are executed simultaneously. Even if a low-priority DNN is being executed first, a high-priority DNN can preempt it, guaranteeing the fast response characteristics of safety-critical applications of autonomous vehicles. As a result of checking through extensive experiments, the performance improved by up to 76.6% in the actual commercial board.

Multi-DNN Acceleration Techniques for Embedded Systems with Tucker Decomposition and Hidden-layer-based Parallel Processing (터커 분해 및 은닉층 병렬처리를 통한 임베디드 시스템의 다중 DNN 가속화 기법)

  • Kim, Ji-Min;Kim, In-Mo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.842-849
    • /
    • 2022
  • With the development of deep learning technology, there are many cases of using DNNs in embedded systems such as unmanned vehicles, drones, and robotics. Typically, in the case of an autonomous driving system, it is crucial to run several DNNs which have high accuracy results and large computation amount at the same time. However, running multiple DNNs simultaneously in an embedded system with relatively low performance increases the time required for the inference. This phenomenon may cause a problem of performing an abnormal function because the operation according to the inference result is not performed in time. To solve this problem, the solution proposed in this paper first reduces the computation by applying the Tucker decomposition to DNN models with big computation amount, and then, make DNN models run in parallel as much as possible in the unit of hidden layer inside the GPU. The experimental result shows that the DNN inference time decreases by up to 75.6% compared to the case before applying the proposed technique.

Anomaly Classification of Railway Point Machine Using Sound Information and DNN (소리정보와 DNN을 이용한 선로전환기의 비정상 상황 분류)

  • Noh, Byeongjoon;Lee, Jonguk;Park, Daihee;Chung, Yonghwa;Kim, Heeyoung;Yoon, SukHan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.611-614
    • /
    • 2016
  • 최근 철도 산업의 비중이 증가함에 따라 열차의 안정적인 주행이 그 어느 때보다 중요한 이슈로 부각되고있다. 특히, 열차의 진로 변경을 위한 핵심 요소인 선로전환기의 결함은 열차의 사고와 직결되는 장비 중 하나로써, 그 이상 여부를 사전에 인지하여 선로전환기의 안정성을 확보하기 위한 유지보수의 지능화 시스템이 필요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 소리정보를 활용하여 선로전환기의 비정상 상황을 분류하는 시스템을 제안한다. 제안하는 시스템은 먼저, 선로전환기의 상황별 소리를 수집하고, 다양한 소리정보를 추출하여 특징 벡터를 생성한다. 다음으로, 딥러닝 모델 중 하나인 DNN(Deep Neural Network)을 이용하여 선로전환기의 비정상 상황을 분류한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 기반으로 DNN의 파라미터에 따른 다양한 실험을 수행한 결과, 약 93.10%의 정확도를 갖는 안정적인 DNN 모델을 설계하였다.

Proposal of DNN-based predictive model for calculating concrete mixing proportions accroding to admixture (혼화재 혼입에 따른 콘크리트 배합요소 산정을 위한 DNN 기반의 예측모델 제안)

  • Choi, Ju-Hee;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.57-58
    • /
    • 2022
  • Concrete mix design is used as essential data for the quality of concrete, analysis of structures, and stable use of sustainable structures. However, since most of the formulation design is established based on the experience of experts, there is a lack of data to base it on. are suffering Accordingly, in this study, the purpose of this study is to build a predictive model to use the concrete mixing factor as basic data for calculation using the DNN technique. As for the data set for DNN model learning, OPC and ternary concrete data were collected according to the presence or absence of admixture, respectively, and the model was separated for OPC and ternary concrete, and training was carried out. In addition, by varying the number of hidden layers of the DNN model, the prediction performance was evaluated according to the model structure. The higher the number of hidden layers in the model, the higher the predictive performance for the prediction of the mixing elements except for the compressive strength factor set as the output value, and the ternary concrete model showed higher performance than the OPC. This is expected because the data set used when training the model also affected the training.

  • PDF