• Title/Summary/Keyword: DNA transfection

Search Result 246, Processing Time 0.049 seconds

Inhibitory Mechanism on NF-${\kappa}B$ Transactivation by Dexamethasone in Pulmonary Epithelial Cells (폐상피세포에서 Dexamethasone에 의한 NF-${\kappa}B$ Transactivation 억제기전에 관한 연구)

  • Lee, Kye-Young;Kim, Yoon-Seop;Ko, Mi-Hye;Park, Jae-Seok;Jee, Young-Koo;Kim, Keun-Youl;Kwak, Sahng-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.682-698
    • /
    • 2000
  • Glucocorticoid receptor (GR) functions as a suppressor of inflammation by inhibiting the expression of many cytokine genes activated by NF-${\kappa}B$. The goal of this study is to investigate the mechanism by which GR repress NF-${\kappa}B$ activation in lung epithelial cells. We used A549 and BEAS-2B lung epithelia! cell lines. Using Ig$G{\kappa}$-NF-${\kappa}B$ luciferase reporter gene construct, we found that dexamethasone significantly suppressed TNF-$\alpha$-induced NF-${\kappa}B$ activation and the overexpression of GR showed dose-dependent reduction of TNF-$\alpha$-induced NF-${\kappa}B$ activity in both cell lines. However, DNA binding of NF-${\kappa}B$ induced by TNF-$\alpha$ in electromobility shift assay was not inhibited by dexamethasone. Super shift assay with anti-p65 antibody demonstrated the existence of p65 in NF-${\kappa}B$ complex induced by $\alpha$ Western blot showed that $I{\kappa}B{\alpha}$ degradation induced by TNF-$\alpha$ was not affected by dexamethasone and $I{\kappa}B{\kappa}$ was not induced by dexamethasone, neither. To evaluate p65 specific transactivation, we adopted co-transfection study of Gal4-p65TA1 or TA2 fusion protein expression system together with 5xGal4-luciferase vector. Co-transfection of GR with Gal4-p65TA1 or TA2 repressed luciferase activity profoundly to the level of 10-20% of p65TA1- or TA2-induced transcriptional activity. And this transrepressional effect was abolished by co-transfection of CBP of SRC-1 expression vectors. These results suggest that GR-mediated transrepression of NF-${\kappa}B$ in lung epithelial cells is through competing for binding to limiting amounts of transcriptional coactivators, CBP or SRC-1.

  • PDF

Effect of Zanthoxylum piperitum Extract on Human Skin Protection from UVB by Regulation of COP1 and PPAR-α (초피나무 열매 추출물의 COP1 및 PPAR-α 조절을 통한 자외선에 대한 피부 보호 효과)

  • Kim, Yun-Sun;Kim, Yumi;Lee, Sanghwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.393-401
    • /
    • 2016
  • Ultraviolet (UV) irradiation from the sun is the primary environmental factor that causes skin damages including skin cancer and premature skin aging. Because, even the most powerful sunscreen can't always afford enough protection, it is necessary to enhance the defensive power of skin against UV. Recently, constitutive photomorphogenic protein-1 (COP1) has shown to contribute to the regulation of UVB response of keratinocytes. In this study, we represent that COP1 and its associated protein, de-etiolated 1 (DET1), might participate in photoaging process in human skin as Arabidopsis COP1 does sun-protective function in plants. After UVB irradiation, the decrease of COP1 and DET1 mRNA expression was followed by the increase of c-Jun total protein. Moreover, transfection with DNA vectors expressing COP1 and DET1 down-regulated the c-Jun total protein. We found that Zanthoxylum piperitum extract (ZE) up-regulated the expression of COP1 and DET1 on human keratinocytes, and inhibited the expression of MMP1 which is one of the genes regulated by c-Jun signal. In addition, ZE has been reported to stimulate PPAR-${\alpha}$ and strengthen the skin barrier. We found that ZE decreased the UVB-induced IL-6 and IL-8 in NHEK cells. In human study, ZE protected skin against UV-B induced erythema and erythema-induced pigmentation. These results indicate that ZE could be useful for the protection against the adverse effects of UV irradiation through various mechanisms.

Ectopic expression of Bcl-2 or Bcl-xL suppresses p-fluorophenylalanine-induced apoptosis through blocking mitochondria-dependent caspase cascade in human Jurkat T cells (Jurkat T 세포에 있어서 ρ-fluorophenylalanine에 의해 유도되는 세포자살의 Bcl-2 및 Bcl-xL에 의한 저해 기전)

  • Han, Kyu-Hyun;Oh, Hyun-Ji;Jun, Do-Youn;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.118-127
    • /
    • 2003
  • $\rho$-Fluorophenylalanine (FPA), a phenylalanine analog, is able to induce apoptotic cell death of human acute leukemia Jurkat T cells. To better understand the mechanism by which FPA induces apoptotic cell death, the effect of ectopic expression of antiapoptotic proteins, Bcl-2 and Bcl-xL, on FPA-induced apoptosis was investigated by employing lurkat T cells transfected with Bcl-2 gene (JT/Bcl-2) or Bcl-xL gene (1/Bcl-xL) and Jurkat T cells transfected with vector (JT/Neo or J/Neo). When Jurkat T cells, JT/Neo or J/Neo, were exposed to FPA at concentrations ranging from 0.63 to 5.0 mM, the cell viability determined by MTT assay declined in a dose-dependent manner. In addition, apoptotic DNA fragmentation along with several apoptotic events such as caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, caspase-9 activation, caspase-3 activation, and degradation of PARP was induced. However, the FPA-induced cytotoxic effect, activation of caspase-8, and cleavage of Bid were significantly abrogated by ectopic expression of Bcl-2 or Bcl-xL. At the same time, there was marked reduction in the level of cytochrome c release from mitorhondria, caspase-9 activation, caspase-3 activation, and degradation of PARP. These results indicate that caspase-8 activation, Bid cleavage, and mitochondrial cytochrome c release with subsequent activation of the caspase cascade are negatively regulated by Bcl-2 or Bcl-xL, and are thus required for FPA-induced apoptosis in Jurkat T cells

Over-expression of PTEN Involved in Troglitazone-induced Apoptosis in Human Osteosarcoma Cells (사람골육종세포주의 트로글리타존 유도 세포사에서 PTEN의 역할)

  • Yoon, Sun-Jung;Zhou, Lu;Kim, Jung-Ryul
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.17 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Purpose: We investigated the effects of phosphatase and tensin homologue deleted on chromosome 10 gene phosphatase and tensin homologue deleted on chromosome 10 gene (PTEN) expression on the cell proliferation and on the responsiveness of troglitazone in osteosarcoma cells. Materials and Methods: Western blotting alnalysis was performed to detect the expression of PTEN in U-2OS cells treated with troglitazone. WST (water-soluble tetrazolium) assay was used to evaluate cell proliferation. Flow cytometry was used to determine cell apoptosis. Further, transfection of wild-type PTEN plasmid DNA was used to upregulate PTEN expression. Results: Troglitazone treatment induced growth inhibition of U2-OS cells in a dose- and time-dependent manner. Troglitazone increased the expression of PTEN in a dose-dependent manner. PTEN upregulation induced by troglitazone treatment resulted in cell growth inhibition and apoptosis in U-2OS cells. PTEN over-expression by plasmid transfection enhanced these effects of troglitazone. Moreover, no changes were observed in the mutant type-PTEN group. Conclusion: Upregulation of PTEN is involved in the inhibition of cell growth and induction of cell apoptosis by troglitazone. Further, PTEN over-expression can cause cell growth inhibition in osteosarcoma cells and these cell growth inhibitions could be enhance by troglitazone treatment.

A STUDY OF APIN-PROTEIN INTERACTIONS USING PROTEIN MICROARRAY (Protein microarray를 이용한 APin-단백질의 상호작용에 관한 연구)

  • Park, Joo-Cheol;Park, Sun-Hwa;Kim, Heung-Joong;Park, Jong-Tae;Youn, Seong-Ho;Kim, Ji-Woong;Lee, Tae-Yeon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.459-468
    • /
    • 2007
  • Protein microarray or protein chips is potentially powerful tools for analysis of protein-protein interactions. APin cDNA was previously identified and cloned from a rat odontoblast cDNA library. The purpose of this study was to investigate the APin-protein interactions during ameloblast differentiation. Protein microarray was carried with recombinant APin protein and MEF2, Aurora kinase A, BMPR-IB and EF-hand calcium binding protein were selected among 74 interacting proteins. Immortalized ameloblast cells (ALCs) were transfected with pCMV-APin construct and U6-APin siRNA construct. After transfection, the expression of the mRNAs for four proteins selected by protein micoarrays were assessed by RT-PCR. The results were as follows: 1. APin expression was increased and decreased markedly after its over-expression and inactivation, respectively. 2. Over-expression of the APin in the ALCs markedly down-regulated the expression of MEF2 and Aurora kinase A, whereas their expression remained unchanged by its inactivation. 3. Expression of BMPR-IB and EF-hand calcium binding protein were markedly increased by the over-expression of the APin in the ALCs, whereas expression of BMPR-IB remained unchanged and expression of EF-hand calcium binding protein was markedly decreased by its inactivation. These results suggest that APin plays an important role in ameloblast differentiation and mineralization by regulating the expression of MEF2, Aurora kinase A, BMPR-IB and EF-hand calcium binding protein.

Membrane-associated Guanylate Kinase Inverted-3 Modulates Enterovirus Replication through AKT Signaling Activation (Membrane associated guanylate kinase inverted-3의 AKT signaling을 통한 enterovirus replication 조절)

  • Park, Jin-Ho;Namgung, Ye-Na;Lim, Byung-Kwan
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1182-1188
    • /
    • 2016
  • Membrane-associated guanylate kinase inverted-3 (MAGI-3) is a member of the family of membrane-associated guanylate kinases (MAGUKs). MAGI-3 modulates the kinase activity of protein kinase B (PKB)/AKT through interactions with phosphatase and tensin homolog (PTEN)/MMAC. Coxsackievirus B3 (CVB3) is a common causative agent of acute myocarditis and chronic dilated cardiomyopathy. Activation of AKT and extracellular signal-regulated kinases 1/2 (ERK1/2) is essential for CVB3 replication, but the relation between MAGI-3 signaling and CVB3 replication is not well understood. This study investigated the role of MAGI-3 in CVB3 infection and replication. MAGI-3 was overexpressed in HeLa cells by polyethylenimine (PEI) transfection. To optimize the transfection conditions, different ratios of plasmid DNA to PEI concentrations were used. MAGI-3 and empty plasmid DNA were transfected into the HeLa cells. MAGI-3 overexpression alone was not sufficient to efficiently activate AKT. However, expression of the CVB3 capsid protein VP1 dramatically increased in the HeLa cells overexpressing MAGI-3 24 h after CVB3 infection. In addition, the activities of AKT and ERK were significantly induced in the CVB3-infected MAGI-3 cells overexpressing HeLa. These results demonstrate that MAGI-3 expression upregulates CVB3 replication through AKT and ERK signaling activation. MAGI-3 may be an important target to control CVB3 replication.

Cloning and Activity Analysis of the FosB Promoter Region from Human Genomic DNA (사람 핵DNA로부터 FosB 유전자 프로모터 클로닝 및 활성도 분석)

  • Na, Han-Heom;Kang, Yoonsung;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.857-863
    • /
    • 2017
  • The FBJ murine osteosarcoma viral oncogene homolog B (FosB) gene is located at chromosome 19, and encodes 43 Kda protein. Functionally, the FosB gene is important for differentiation, development, and pathogenesis. Furthermore, the FosB gene is suggested as possible biomarker for tracing disease prognosis. In this study, we constructed plasmid containing a FosB promoter region and evaluate its promoter activity. We analyzed the putative promoter region in FosB genomic DNA using bioinformatics program, and we found important regulatory elements in 1 Kb upstream from transcription start site (TSS). Therefore, we performed polymerase chain reaction (PCR) amplification on region from-1,555 upstream to +73 of the FosB genomic DNA, and PCR product was inserted into TA vector to create the $TA-1^{st}FosBp$ plasmid. We then prepared the primer sets, which contain a restriction enzyme site for Kpn1 and Nhe1, in order to reinsert into the TA vector to prepare $TA-2^{nd}FosBp$ plasmid. It was finally subcloned into pGL3-luc vector after enzyme cutting. To evaluate whether the cloned plasmid is useful in cell based experiment, we performed luciferase assay with pGL3-FosBp-luctransfection. FosB promoter activity was increased compared to empty vector, and this activity was significantly increased by treatment of doxorubicin and taxol. We obtained consistent data on regulation of FosB gene expression after anticancer drug treatment using Western blot analysis. The results suggest that promoter cloning of the human FosB gene is very useful for studying gene expression and analyzing biomarkers.

Effect of cAMP on the Replication of Human Cytomegalovirus (Human cytomegalovirus 증식에 미치는 cAMP의 영향)

  • 지용훈;윤주현;이찬희
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.72-78
    • /
    • 1993
  • Since the 'promoter/enhancer region of the major immediate early (IE) ~ene of human cytomegalovirus (HCMV) contains the cyclic AMP (cAMP) response element (CRE) consensus sequence, it was reasonable to hypothesize that cAMP might affect HCMV replication. Cyclic AMP modulating drugs such as 8-bromoadenosine 3',5'-cyclic monophosphate (BrA), and papaverine were used to affect the intracellular levels of cAMP, and the effects of the drugs on HCMV replication were studied. While papaverine effectively inhibited HCMV multiplication and DNA synthesis, BrA exerted little effect on the production of infectious HCMV yields. The synthesis of DNA in HCMV-infected cells appeared to be stimulated by BrA In order to understand the effect of cAMP on the expression of HCMV major IE gene, plasmid (pCMVIE/CAT) containing a reporter gene driven by HCMV IE promoter was transfected into either permissive human embryo lung (HEL) cells or nonpermissive cells. PL,Javerine, which has been reported to block the HCMV-induced increase in cAMP, reduced the expression of pCMVIE/CA T in permissive HEL cells. Treatment of transfected cells with BrA increased the expression of HCMV major IE promoter not only in HEL cells, but also in nonpermissive HeLa and Vero cells. Therefore, it seems that the expression of HCMV major IE gene is regulated by cAMP.

  • PDF

ACTIVATION OF H-RAS ONCOGENE IN RAT SALIVARY GLAND TUMORS INDUCED BY DMBA AND IRRADIATION (DMBA 매식과 방사선 조사로 유도된 백서 타액선 종양에서 H-ras 암유전자의 활성화)

  • Hu Key-Soon;Choi Jong-Whan;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.245-259
    • /
    • 1998
  • Cellular transforming genes have been identified in a number of different tumor cell lines and tumor types. A significant number of these oncogenes belong to the ras gene family. The ras gene family consists of three closely related genes:H-ras, K-ras and N-ras which code for a related 21 kDa protein. Mutations in codon 12, 13 and 61 of one of the three ras genes convert these genes into acute oncogenes. The presence of H-ras gene mutations has important prognostic implications in various tumors. Each genomic DNA was isolated from tumors induced by implantation with DMBA, or by treatment with DMBA -implantation/irradiation. When genome DNA was transfected into NIH 3T3 cells and investigated by two-step PCR-RFLP, the fOllowing results were concluded: 1. Transformation foci developed in two groups when the genome DNA of two experimental groups were transfected into NIH 3T3 cells. 2. Transformation efficiency was 0.01-0.02 foci/㎍DNA in the experimental group with the DMBA-implantation, 0.01-0.03 foci/㎍lgDNA in the experimental group with the DMBA-implantation/irradiation according to results of transfection assay. 3. When the point mutation of H-ras gene was investigated by a two-step PCR-RFLP, there was 13.9% (5/36) in the experimental group with the DMBA implantation, 15.4 % (6/39) in the experimental group with the DMBA -implantation/irradiation. 4. The point mutation in codon 12 and 61 of H-ras was 5.6%(2/36) and 8.3%(3/36) in the experimental group with the DMBA implantation. 5. The point mutation in codon 12 and 61 of H-ras gene was 7.7%(3/39) in the experimental group with the DMBA -implantation/irradiation.

  • PDF

Effect of Bcl-2 on Apoptosis and Transcription Factor NF-κB Activation Induced by Adriamycin in Bladder Carcinoma BIU87 Cells

  • Zhang, Guo-Jun;Zhang, Zhe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2387-2391
    • /
    • 2013
  • Resistance to apoptosis is a major obstacle preventing effective therapy for malignancies. Bcl-2 plays a significant role in inhibiting apoptosis. We reconstructed a stable human Bcl-2 transfected cell line, BIU87-Bcl-2, that was derived from the transfection of human bladder carcinoma cell line BIU87 with a plasmid vector containing recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. A cell line transfected with the plasmid alone [pcDNA3.1(+)-neo] was also established as a control. BIU87 and BIU87-neo proved sensitive to adriamycin induced apoptosis, while BIU87-Bcl-2 was more resistant. In view of the growing evidence that NF-${\kappa}B$ may play an important role in regulating apoptosis, we determined whether Bcl-2 could modulate the activity of NF-${\kappa}B$ in bladder carcinoma cells. Stimulation of BIU87, BIU87-neo and BIU87-Bcl-2 with ADR resulted in an increase expression of NF-${\kappa}B$ (p<0.001). The expression of NF-${\kappa}B$ in BIU87-Bcl-2 was higher than in the other two cases, with a concomitant reduction in the $I{\kappa}B{\kappa}$ protein level. These results suggest that the overexpression of Bcl-2 renders human bladder carcinoma cells resistant to adriamycin-induced cytotoxicity and there is a link between Bcl-2 and the NF-${\kappa}B$ signaling pathway in the suppression of apoptosis.