• Title/Summary/Keyword: DNA probe method

Search Result 143, Processing Time 0.028 seconds

Identification of Aujeszky's disease virus by in situ hybridization (In situ hybridization 조직화학법을 이용한 오제스키병 바이러스 동정)

  • Kim, Soon-bok;Sur, Jung-hang;Moon, Oun-kyung
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.2
    • /
    • pp.327-333
    • /
    • 1994
  • The purpose of this study was to establish a rapid diagnostic method detecting Aujeszky's disease virus (ADV) DNA in the cultured cell monolayers (PK-15) and tissue sections of ADV(NYJ-1-87)-infected rats and pigs by in situ hybridization(ISH). Detection of specific ADV-DNA in infected cells was conducted by radiolabeled ISH method using $^{32}P-labeled $ DNA probe (BamH1 7 fragment) which contains a 6.3 Kb ADV-DNA insert. Where ADV-DNA was detected by radiolabeled ISH, the deposition of black photographic grains occurred in the nuclei and the cytoplasms of ADV-infected cells. Positive hybridization signal was often observed in the spinal trigerminal nucleus of the pons, the nucleus of the trigerminal ganglion neuron and the epithelial cells of tonsillar crypts. The results suggested that ISH is considered as a highly sensitive and reliable tool for confirmative diagnosis of this viral disease.

  • PDF

Molecular Cloning of H-Y Antigen Gene III. Construction of Mouse Testis cDNA Library and Screening of H-Y Ag Gene (H-Y 항원 유전자의 클로닝에 관한 연구 III. 생쥐정소 cDNA Library 구성과 유전자의 검색)

  • 이정렬;김창규;김종배
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 1993
  • These experiments were carried out to construct mouse testis cDNA library and to to seen H-Y Ag gene. Mouse testis was obtained from BALB/c inbreed mouse that was after-born 1 week. Isolation of mouse testis total RNA was carried out by guanidum/cesium choloride, poly(A+) mRNAs were purified by oligo d(T)-cellulose chromatography method. To investigate protein synthesis activity, in-vitro translation carried out by total RNA and poly(A+) mRNA. The products of in-vitro translation were identified in 12.5% PAGE. Single strand DNA and double strand DNA were synthesized from poly(A+) mRNA and purified using phenol/chloroform/isoamylalcohol. Synthesized cDNA was combined with cohesive Eco RI polylinker, its recombination efficiencies were identified by X-gal and IPTG. In the cDNA library, 1$\times$107 phagemids were screened with 32P labelled probe. Hybridization were carried on $65^{\circ}C$ for 16~20hours. And 1$\times$106 phagemids were screened with rabbit-anti-H-Y. In former, select 5 positive clones, and later, 1 positive clone. Its southern blot analysis showed various size of insert cDNA from 0.7kb to 3kb.

  • PDF

Direct Identification of Vibrio vulnificus by PCR Targeting Elastase Gene

  • Lee, Jae-Won;Jun, In-Joon;Kwun, Hyun-Jin;Jang, Kyung-Lib;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.284-289
    • /
    • 2004
  • A PCR assay for the rapid detection of Vibrio vulnificus strains was developed using a virulence gene for elastase found in various Vibrio species. The DNA sequences in the elastase gene facilitated the identification of a species-specific probe for pathogenic V. vulnificus strains from both clinical and environmental sources. Using an elastase gene-based PCR reaction, a species-specific 507-bp PCR product was visualized by agarose gel electrophoresis. Three different DNA extraction methods were then compared to improve the simplicity and rapidity of detection. A PCR assay using the conventional DNA extraction or boiling method was able to detect as few as 25 V. vulnificus cells, making the detection limits at least 1-log-scale lower than that for the EDT A-treated DNA extraction method. In particular, the boiling method, which does not require purification of the chromosomal DNA, was very effective in terms of simple and rapid detection. Meanwhile, the detection limit in a mixed bacterial culture that included other bacteria, such as Escherichia coli or Bacillus subtilis, was two V. vulnificus cells, which was 1-log-scale lower than that for the control. Accordingly, when coupled with a new DNA extraction method, the elastase gene-based PCR can provide a rapid, specific, and sensitive method for identifying V. vulnificus in clinical and environmental samples.

Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples

  • Shin, Ji-Hun;Lee, Sang-Eun;Kim, Tong Soo;Ma, Da-Won;Cho, Shin-Hyeong;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler's diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, $FAM^{TM}$, $HEX^{TM}$, $Cy5^{TM}$, and CAL Fluor $Red^{(R)}$ 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was $2{\times}10$ copies for C. parvum and for C. cayetanensis, while it was $2{\times}10^3$ copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler's diarrhea.

Analysis of Chromosome aberrations by fluorescence in situ hybridization using triple chromosome-specific probes in human lymphocyte exposed to radiation (3중 DNA probe를 이용한 FISH(fluorescence in situ hybridization) 기법으로 방사선에 의한 염색체 이상 분석)

  • Chung, Hai-Won;Kim, Su-Young;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 1999
  • Fluorescence in situ hybridization with chromosome-specific probe has been shown to be a valid and rapid method for detection of chromosome rearrangements induced by radiation. This method is useful for quantifying structural aberrations, expecially for stable ones, such as translocation and insertion, which are difficult to detect with conventional method in human lymphocyte. In order to apply FISH method for high dose biological dosimetry, chromosomal abberations by radiation at doses of 1, 3, 5, and 7Gy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. The frequencies of stable translocation per cell equivalent were 0.04, 0.33, 1.22, 2.62, and 5.58 for the lymphocyte exposed to 0, 1, 3, 5, and 7Gy, respectively, and those of dicentric were 0.00, 0.06, 0.52, 1.19 and 2.44, respectively. Significantly more translocation of t(Ab), a translocated chromosome with a piece of painted acentric matrial 'b' attached to unpainted piece containing centromere 'A', than reciprocal chromosome t(Ba) was observed. The frequencies of all type of chromosome rearrangements increased with dose. From above result, FISH seemed to be useful for radiation biodosimetry by which the frequencies of various types of stable aberrations in human lymphocyte can be observed more easily than by conventional method and so will improve our ability to perform meaningful biodosimetry.

  • PDF

Development of dot blot hybridization method using non-radio labeled probes for the diagnosis of malignant catarrhal fever (Dot blot hybridization에 의한 malignant catarrhal fever virus의 진단법 개발)

  • Kim, Ok-Jin
    • Korean Journal of Veterinary Pathology
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • Malignant catarrhal fever (MCF) is a systemic disease of ruminants caused by a gamma herpesvirus, ovine herpesvirus 2 (OvHV-2). Dot blot hybridization (DBH) protocols for detecting and differentiating this MCF virus were developed. OvHV-2 specific primer pairs, 556/555, were used for the amplification of target DNA. Then, the amplified DNA was labeled with incorporation of digoxigenin (DIG). The Dig-labeled probe was able to detect and differentiate specifically OvHV-2 DNA. This DBH technique can be applied to confirm the presence of MCF virus on clinical samples and to differentiate specifically between OvHV-2 infection and other viral infections.

  • PDF

Evaluation of a novel TaqMan probe-based real-time polymerase chain reaction (PCR) assay for detection and quantitation of red sea bream iridovirus

  • Kim, Guk Hyun;Kim, Min Jae;Choi, Hee Ju;Koo, Min Ji;Kim, Min Jeong;Min, Joon Gyu;Kim, Kwang Il
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.351-359
    • /
    • 2021
  • The red sea bream iridovirus (RSIV) belonging to genus Megalocytivirus is responsible for red sea bream iridoviral disease (RSIVD) in marine and freshwater fishes. Although several diagnostic assays for RSIV have been developed, diagnostic sensitivity (DSe) and specificity (DSp) of real-time polymerase chain reaction (PCR) assays are not yet evaluated. In this study, we developed a TaqMan probe-based real-time PCR method and evaluated its DSe and DSp. To detect RSIV, the probe and primers were designed based on consensus sequences of the major capsid protein (MCP) genes from megalocytiviruses including RSIV, infectious spleen and kidney necrosis virus (ISKNV), and turbot reddish body iridovirus (TRBIV). The probe and primers were shown to be specific for RSIV, ISKNV, and TRBIV-types megalocytiviruses. A 95% limit of detection (LOD95%) was determined to be 5.3 viral genome copies/µL of plasmid DNA containing the MCP gene from RSIV. The DSe and DSp of the developed real-time PCR assay for field samples (n = 112) were compared with those of conventional PCR assays and found to be 100% and 95.2%, respectively. The quantitative results for SYBR Green and TaqMan probe-based real-time PCR were not significantly different. The TaqMan probe-based real-time PCR assay for RSIV may be used as an appropriate diagnostic tool for qualitative and quantitative analysis.

Immunocytochemistry, In situ hybridization and electron microscopy for early diagnosis of Aujeszky's in living pigs (오제스키병의 생체 조기진단을 위한 면역세포화학, In situ hybridization 및 전자현미경적 연구)

  • Moon, Oun-kyong;Kim, Soon-bok;Sur, Jung-hyang;Song, Geun-suk;Nho, Whan-gook
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.845-858
    • /
    • 1996
  • The purpose of this study was to establish early diagnostic methods for the detection of Aujeszky's disease viral antigens and nucleic acid in nasal cells, and buffy coats from experimentally infected living pigs by a combination of immunocytochemistry, in situ hybridization with digoxigenin(DIG)-labled probe and electron microscopy. Forty days old piglets were inoculated intranasally with $10^{7.0}TCID_{50}$ of Aujeszky's disease virus (ADV, NYJ-1-87 strain). The viral antigens and nucleic acid of ADV were detected in nasal cells, and buffy coat for 20 days after inoculation by immunocytochemistry, in situ hybridization with DIG-labeled probe and electron microscopical method. The results were compared with conventional methods such as a porcine Aujeszky's disease serodiagnostic(PAD) kit, neutralization test(NT) and virus isolation. 1. The viral antigens, nucleic acids and capsids of ADV were detected in nasal cells, buffy coats from 3 days to 20 days after inoculation by immunocytochemistry, in situ hybridization with DIG-labeled probe and electron microscopy, respectively. 2. When viral antigens were detected by the immunocytochemical technique, a diffuse brown deposit was observed in the nucleus and cytoplasm of nasal cells, buffy coats and PK-15 cells under a microscope. 3. DIG-labeled DNA probe was prepared by amplification of conserved sequence of recombinant ADV-gp50 clone with polymerase chain reacction. When ADV-DNA was detected by ISH with DIG-labeled probe, purplish blue pigmentation were observed in the nuclei and cytoplasms of ADV-infected cells under a microscope. Positive signals were observed in nasal cells and in the buffy coat and PK-15 cells at the first day after inoculation. 4. Where ADV-capsids were detected by transmission electron microscopical method, aggregation of capsids was observed in the nuclei and cytoplasms of nasal cells, buffy coats and PK-15 cells. The results suggested that these methods were considered as the highly sensitive and reliable tools for rapid and confirmative diagnosis of Aujeszky's disease in living pigs.

  • PDF

Genetic Transformation of the Yeast Dekkera/Brettanomyces bruxellensis with Non-Homologous DNA

  • Miklenic, Marina;Stafa, Anamarija;Bajic, Ana;Zunar, Bojan;Lisnic, Berislav;Svetec, Ivan-Kresimir
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.674-680
    • /
    • 2013
  • Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/${\mu}g$ DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.

Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip

  • Park, Nam-Yong;Na, Sung-Ho;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2007
  • This study was conducted to detect ${\beta}$-lactam antibiotic-resistant genes in the 400 E coli isolates from porcine fecal samples in Korea by a DNA chip. The DNA chip contains the specific probe DNAs of the ${\beta}$-lactam antibiotic-resistant genes that had been labeled with a mixture of primer set designed to amplify specific genes (PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY and AmpC) using a multiplex polymerase chain reaction (PCR). Of 400 isolates 339 contained at least one ${\beta}$-lactamases gene. Resistance to ${\beta}$-lactamases was mediated mainly by AmpC (n = 339, 100%), and followed by TEM (n = 200, 59.0%), CMY (n = 101, 29.8%), PSE (n = 30, 8.9%) and both OXA and SHV genes (n = 20, 5.9%), while the FOX, MEN and OXY genes were not detected. The other sixty-one did not contain any ${\beta}$-lactamase genes even though they were resistant to antimicrobial drugs. In conclusion, the DNA chip system can be used as a rapid and reliable method for detecting of ${\beta}$-lactamases genes, which will help veterinarians select the antibiotics for monitoring and treating of animal diseases.