• Title/Summary/Keyword: DNA polymerase gene

Search Result 859, Processing Time 0.03 seconds

Development of a Multiplex PCR Assay for Rapid Identification of Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates (다중 PCR 분석법을 이용한 참조기, 부세, 흑조기 및 긴가이석태의 신속한 종판별법 개발)

  • Noh, Eun Soo;Lee, Mi-Nan;Kim, Eun-Mi;Park, Jung Youn;Noh, Jae Koo;An, Cheul Min;Kang, Jung-Ha
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.746-753
    • /
    • 2017
  • In order to rapidly identify four drums species, Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates, a highly efficient and quick method has been developed using multiplex polymerase chain reaction (PCR) with species-specific primers. Around 1.4 kbp of the mitochondrial COI gene sequences from the four drums species were aligned, and species-specific forward primers were designed, based on the single nucleotide polymorphism (SNP). The optimal conditions for PCR amplification were selected through cross-reactivity, using a gradient PCR method. The PCR results demonstrated species-specific amplification for each species at annealing temperatures between 50 and $62^{\circ}C$. Multiplex species-specific PCR (MSS-PCR) amplification reactions with four pairs of primers were performed for sixteen specimens of each species. MSS-PCR lead to a species-specific amplification of a 1,540 bp fragment in L. polyactis, 1,013 bp in A. nibe, 474 bp in L. crocea, and 182 bp in P. elongates, respectively. The four different sizes of each PCR product can be quickly and easily detected by single gel electrophoresis. The sensitivity of the MSS-PCR of the DNA was up to $0.1ng/{\mu}l$ as a starting concentration for the four different species tested. These results suggest that MSS-PCR, with species-specific primers based on SNP, can be a powerful tool in the rapid identification of the four drums species, L. polyactis, L. crocea, A. nibe, and P. elongates.

Serotypes and genotypes of Salmonella isolates from slaughtered pigs (도축돈에서 분리된 살모넬라의 혈청형 및 유전형)

  • Choi, Won-Zong;Jung, Ji-Hun;Won, Ho-Keun;Kang, Zheng-Wu;Hahn, Tae-Wook
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Salmonella infections cause the disease in pigs but also some zoonotic Salmonella serotypes can be transmitted to human through swine products, resulting in food poisoning. The objective of this study was to investigate the bacteriological prevalence and detection of invA gene using Salmonella specific polymerase chain reaction (PCR), the epidemiological characteristics related to Salmonella strains cultured from pig samples in Gangwon areas using serotyping, random amplified polymorphic DNA (RAPD) and pulsed field gel electrophoresis (PFGE) methods. During the period of November 2001 through April 2002, 1,174 ileocecal lymph node were collected from the slaughtered pigs raised in 38 farms located in Gangwon province. The samples were submerged in boiling water and macerated in saline and lymph node homogenates were inoculated into Tetrathionate broth with iodine (TTB, Difco, 0.5% iodine was added) for enrichment growth. Then additional tests were performed using several mediums, and suspects were identified by API 20E kit (BioMerieux) and PCR. Of total 1,174 samples from 38 farms, 44 (3.7%) were isolated as Salmonella spp from 13 farms (34.2%). Of 44 isolates, 31 were in Yangyang region, followed by 9 in Goseong, 2 in both Gangneung and Sokcho. However, there was no difference in regional isolation frequency. All isolates have a 521bp amplified product in Salmonella specific PCR with primer invA which encodes in proteins for invasion of epithelial cells. Of 44 recovered serotypes, 23 (52.3%) were S Eingedi, 10 (22.7%) S Schwarzengrund, 9 (20.5%) S Typhimurium, and 2 (4.5%) S Mbandaka. In RAPD analysis, there appeared to be unique bands distinguishing each serotype, although similarities exist between the different serotypes. Four serotypes of 44 Salmonella isolates appeared to fall into 14 different RAPD types. In PFGE analysis, 9 S Typhimurium were tested with XbaI enzyme and SpeI enzyme. The combination of results obtained with two enzymes subdivided the 9 S Typhimurium into 4 PFGE types.

CDC6 mRNA Expression Is Associated with the Aggressiveness of Prostate Cancer

  • Kim, Ye-Hwan;Byun, Young Joon;Kim, Won Tae;Jeong, Pildu;Yan, Chunri;Kang, Ho Won;Kim, Yong-June;Lee, Sang-Cheol;Moon, Sung-Kwon;Choi, Yung-Hyun;Yun, Seok Joong;Kim, Wun-Jae
    • Journal of Korean Medical Science
    • /
    • v.33 no.47
    • /
    • pp.303.1-303.10
    • /
    • 2018
  • Background: Cell division cycle 6 (CDC6) is an essential regulator of DNA replication and plays important roles in the activation and maintenance of the checkpoint mechanisms in the cell cycle. CDC6 has been associated with oncogenic activities in human cancers; however, the clinical significance of CDC6 in prostate cancer (PCa) remains unclear. Therefore, we investigated whether the CDC6 mRNA expression level is a diagnostic and prognostic marker in PCa. Methods: The study subjects included 121 PCa patients and 66 age-matched benign prostatic hyperplasia (BPH) patients. CDC6 expression was evaluated using real-time polymerase chain reaction and immunohistochemical (IH) staining, and then compared according to the clinicopathological characteristics of PCa. Results: CDC6 mRNA expression was significantly higher in PCa tissues than in BPH control tissues (P = 0.005). In addition, CDC6 expression was significantly higher in patients with elevated prostate-specific antigen (PSA) levels (> 20 ng/mL), a high Gleason score, and advanced stage than in those with low PSA levels, a low Gleason score, and earlier stage, respectively. Multivariate logistic regression analysis showed that high expression of CDC6 was significantly associated with advanced stage (${\geq}T3b$) (odds ratio [OR], 3.005; confidence interval [CI], 1.212-7.450; P = 0.018) and metastasis (OR, 4.192; CI, 1.079-16.286; P = 0.038). Intense IH staining for CDC6 was significantly associated with a high Gleason score and advanced tumor stage including lymph node metastasis stage (linear-by-linear association, P = 0.044 and P = 0.003, respectively). Conclusion: CDC6 expression is associated with aggressive clinicopathological characteristics in PCa. CDC6 may be a potential diagnostic and prognostic marker in PCa patients.

Characterization of Genes Related to the Cell Size Growth and CCN Family According to the Early Folliculogenesis in the Mouse (쥐의 초기 난포 발달에 관여하는 Cell Size Growth 및 CCN Family 유전자에 관한 연구)

  • Kim, Kyeoung-Hwa;Park, Chang-Eun;Yoon, Se-Jin;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2005
  • Objectives: Previously, we sought to compile a list of genes expressed during early folliculogenesis by using cDNA microarray to investigate follicular gene expression and changes during primordialprimary follicle transition and development of secondary follicles (Yoon et al., 2005). Among those genes, a group of genes related to the cell size growth was characterized during the ovarian development in the present study. Methods: We determined ovarian expression pattern of six genes related to the cell size growth (cyr61, emp1, fhl1, socs2, wig1 and wisp1) and extended into CCN family (${\underline{c}}onnective$ tissue growth factor/${\underline{c}}ysteine$-rich 61/${\underline{n}}ephroblastoma$-overexpressed), ctgf, nov, wisp2, wisp3, including cyr61 and wisp1 genes. Expression of mRNA and protein according to the ovarian developmental stage was evaluated by in situ hybridization, and/or semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), and immunohistochemistry, respectively. Results: Among 6 genes related to the cell size growth, cyr61 and wisp1 mRNA was detected only in oocytes in the postnatal day5 mouse ovaries. cyr61 mRNA expression was limited to the nucleolus of oocytes, while wisp1 was expressed in the cytoplasm and nucleolus of oocytes, except nucleus. cyr61 mRNA expression, however, was found in granulosa cells from secondary follicles. The rest 4 genes in the cell size growth group were detected in oocytes, granulosa and theca cells. Cyr61 and Wisp1 proteins were expressed in the oocyte cytoplasm from primordial follicle stage. Especially, Cyr61 protein was detected in pre-granulosa cells, Wisp1 protein was not. By using RT-PCR, we evaluated and decided that Cyr61 protein is produced by their own mRNA in pre-granulosa cells that was not detected by in situ hybridization. cyr61 and wisp1 genes are happen to be the CCN family members. The other members of CCN family were also studied, but their expression was detected in oocytes, granulose and theca cells. Conclusions: We firstly characterized the ovarian expression of genes related to the cell size growth and CCN family according to the early folliculogenesis. Cyr61 protein expression in the pre-granulosa cells is profound in meaning. Further functional analysis for cyr61 in early folliculogenesis is under investigation.

Isolation and Identification of Ampicillin-resistant Bacteria in Changwon (창원근교에서의 ampicillin 내성세균의 분리 및 동정)

  • Bae, Young-Min
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1529-1535
    • /
    • 2018
  • The number of antibiotic-resistant bacteria is increasing rapidly while the discovery rate of new antibiotics is in decline. A systematic study is therefore necessary to investigate which bacteria are resistant to medically important antibiotics and how high that resistance is. To that end, this study aimed to analyze which bacteria demonstrated resistance to ampicillin, one of the currently most-widely used medical antibiotics. Water samples were collected from the Changwon-Cheon that runs through Changwon City and from the pond in front of the dormitory building at Changwon University. Hundreds of ampicillin-resistant colonies were obtained and 22 morphologically distinct examples were chosen for further study. These bacteria were identified by amplifying their 16S rRNA genes and comparing those sequences with data in GenBank. The bacteria was identified as belonging to 10 families, 12 genera, and 17 species, and all were able to grow in the presence of $50{\mu}g/ml$ ampicillin while seven showed growth at ampicillin concentrations as high as 1.5 mg/ml.

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

Trends in the rapid detection of infective oral diseases

  • Ran-Yi Jin;Han-gyoul Cho;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • v.48 no.2
    • /
    • pp.9-18
    • /
    • 2023
  • The rapid detection of bacteria in the oral cavity, its species identification, and bacterial count determination are important to diagnose oral diseases caused by pathogenic bacteria. The existing clinical microbial diagnosis methods are time-consuming as they involve observing patients' samples under a microscope or culturing and confirming bacteria using polymerase chain reaction (PCR) kits, making the process complex. Therefore, it is required to analyze the development status of substances and systems that can rapidly detect and analyze pathogenic microorganisms in the oral cavity. With research advancements, a close relationship between oral and systemic diseases has been identified, making it crucial to identify the changes in the oral cavity bacterial composition. Additionally, an early and accurate diagnosis is essential for better prognosis in periodontal disease. However, most periodontal disease-causing pathogens are anaerobic bacteria, which are difficult to identify using conventional bacterial culture methods. Further, the existing PCR method takes a long time to detect and involves complicated stages. Therefore, to address these challenges, the concept of point-of-care (PoC) has emerged, leading to the study and implementation of various chair-side test methods. This study aims to investigate the different PoC diagnostic methods introduced thus far for identifying pathogenic microorganisms in the oral cavity. These are classified into three categories: 1) microbiological tests, 2) microchemical tests, and 3) genetic tests. The microbiological tests are used to determine the presence or absence of representative causative bacteria of periodontal diseases, such as A. actinomycetemcomitans, P. gingivalis, P. intermedia, and T. denticola. However, the quantitative analysis remains impossible, and detecting pathogens other than the specific ones is challenging. The microchemical tests determine the activity of inflammation or disease by measuring the levels of biomarkers present in the oral cavity. Although this diagnostic method is based on increase in the specific biomarkers proportional to inflammation or disease progression in the oral cavity, its commercialization is limited due to low sensitivity and specificity. The genetic tests are based on the concept that differences in disease vulnerability and treatment response are caused by the patient's DNA predisposition. Specifically, the IL-1 gene is used in such tests. PoC diagnostic methods developed to date serve as supplementary diagnostic methods and tools for patient education, in addition to existing diagnostic methods, although they have limitations in diagnosing oral diseases alone. Research on various PoC test methods that can analyze and manage the oral cavity bacterial composition is expected to become more active, aligning with the shift from treatment-oriented to prevention-oriented approaches in healthcare.

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.

Biological Control of White Rot in Apple Using Bacillus spp. (Bacillus spp.를 이용한 사과 겹무늬썩음병의 생물학적 방제)

  • Ha-Kyoung Lee;Jong-Hwan Shin;Seong-Chan Lee;You-Kyoung Han
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.390-398
    • /
    • 2023
  • Apple white rot, caused by Botryosphaeria dothidea, is one of the important diseases in Korea. B. dothidea can cause pre- and postharvest decay on apple fruit as well as canker and dieback of apple trees. In this study, we isolated bacteria from the trunk of apple trees and tested their antagonistic activity against B. dothidea. Five bacterial isolates (23-168, 23-169, 23-170, 23-172, and 23-173) were selected that were most effective at inhibiting the mycelial growth of the pathogens. The isolate 23-172 was identified as Bacillus amyloliquefaciens and four isolates 23-168, 23-169, 23-170, and 23-173 were identified as Bacillus velezensis by RNA polymerase beta subunit (rpoB) and DNA gyraseA subunit (gyrA) gene sequencing. All isolates showed strong antagonistic activity against B. dothidiea as well as Colletotrichum fructicola and Diaporthe eres. All isolates exhibited cellulolytic, proteolytic and phosphate solubilizing activities. In particular, two isolates 23-168, 23-169 were shown to significantly reduce the size of white rot lesions in pretreated apple fruits. These results will provide the basis for the development of a fungicide alternative for the control of white rot of apple.