• Title/Summary/Keyword: DNA mutation

Search Result 613, Processing Time 0.02 seconds

Characterization of Mutations in Bruton's Tyrosine Kinase(Btk) Gene from Unrelated 3 X-linked Agammaglobulinemia(XLA) Families in Korea (국내 X-관련성 범저감마글로불린혈증 세가족에 대한 Bruton's Tyrosine Kinase 단백질 발현 및 유전자 변이 분석)

  • Song, Chang-Hwa;Jo, Eun-Kyeong;Park, Jeong-Kyu;Kim, Jung-Soo;Hong, Soo-Jong;Lee, Jae-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.3
    • /
    • pp.302-310
    • /
    • 2002
  • Purpose : X-linked agammaglobulinemia(XLA) is an immunodeficiency caused by abnormalities in Bruton's tyrosine kinase(Btk), and is characterized by a deficiency of peripheral blood B cells. We studied cytoplasmic expression of Btk protein and analyzed the Btk gene in peripheral blood mononuclear cells(PBMC) from three XLA families in Korea. Methods : Heparinized venous blood samples were collected from four XLA patients and additional family members in three unrelated XLA families. Mononuclear cells were separated from their blood and the intracellular Btk protein was characterized by a flow cytometry. The mutation analysis was performed using direct sequencing. Results : Cytoplasmic expression of Btk protein in monocytes was not detected in the patients with XLA. We observed a novel deletion and two point mutations within introns(intron 1 and intron 18) resulting in alternative splicings. In XLA family 2, a 980 bp deletion(from intron 9+191 T to intron 10-215 C) including exon 10 was found in patient P2. He was the only sporadic case in this study, because his mother and brother showed a normal Btk expression by flow cytometry. Conclusion : These identified genetic alterations support the molecular heterogeneity of Btk gene in XLA disease. Additionally, by means of flow cytometric analysis, we diagnosed three hypogammaglobulinemia patients as XLA. Advancements in diagnostic methods has facilitated a prompt and definite diagnosis of this disease.

Cross Resistance of Fluoroquinolone Drugs on gyrA Gene Mutation in Mycobacterium tuberculosis (결핵균에서 gyrA 유전자 돌연변이에 따른 Fluoroquinolone계 약제들의 교차내성)

  • Park, Young Kil;Park, Chan Hong;Koh, Won-Jung;Kwon, O Jung;Kim, Bum Jun;Kook, Yoon Hoh;Cho, Sang Nae;Chang, Chulhun;Bai, Gill Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.250-256
    • /
    • 2005
  • Background : Fluoroquinolone drugs are an important anti-tuberculous agent for the treatment of multi-drug resistant tuberculosis. However, many drugs belonging to the fluoroquinolones have different cross resistance to each other. Methods : Sixty-three ofloxacin (OFX) resistant and 10 pan-susceptible M. tuberculosis isolates were selected, and compared for their cross resistance using a proportion method on Lowenstein-Jensen media, containing ofloxacin (OFX), ciprofloxacin (CIP), levofloxacin (LVX), moxifloxacin (MXF), gatifloxacin (GAT) and sparfloxacin (SPX), at concentrations ranging from 0.5 to $3{\mu}g/ml$. DNA extracted from the isolates was directly sequenced after amplifying from the gyrA and gyrB genes. Results : The 63 OFX resistant M. tuberculosis isolates showed complete cross resistance to CIP, but only 90.5, 44.4, 36.5 and 46.0% to LVX, MXF, GAT, and to SPX, respectively. Fifty-one of the isolates (81.0%) had point mutations in codons 88, 90, 91 and 94 in gyrA, which are known to be correlated with OFX resistance. The Gly88Ala, Ala90Valand Asp94Ala mutations in gyrA showed a tendency to be susceptible to MXF, GAT and SPX. Only 4 isolates had mutations in the gyrB gene, which did not affect the OFX resistance. Conclusion : About 60% of the OFX resistant M. tuberculosis isolates were susceptible to GAT, SPX and MXF. These fluoroquinolones may be useful in the treatment of TB patients showing OFX resistance.

Genetic Polymorphisms of MYL2 and ADCYAP1R1 Genes and Their Association with Carcass Traits in Finished Pigs (비육돈의 도체형질과 MYL2, ADCYAP1R1 유전자 다형성의 상관관계)

  • Han, ang-Hyun;Shin, Kwang-Yun;Lee, Sung-Soo;Ko, Moon-Suck;Seong, Pil-Nam;Kwon, Ki-Baek;Cho, In-Cheol
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.301-308
    • /
    • 2008
  • DNA variation of MYL2 intron 5 A345G and ADCYAP1R1 intron 2 A337G were investigated for carcass trait association in finished pigs. Three genotypes(two homozygotes and their heterozygote) were found at 10.6% AA, 45.6% AG and 43.8% GG in MYL2 and 60.5% AA, 34.6% AG, and 22.2% GG for ADCYAP1R1. In finished pig population, individuals containing genotype G- of MYL2 had significantly heavier carcass weight by more than 2.4 kg and thicker backfat thickness by more than 1.3 mm than those of AA homozygous pigs(p<0.05). No significant difference was found in other traits tested in this study such as marbling score, meat color, texture, moisture and separation score(p>0.05). The ADCYAP1R1 intron 2 377GG homozygotes showed coarse texture, i.e., meat quality was inferior than those of AG and AA genotypes, and the moisture level of homozygote AA was higher than those of AG and GG genotypes(p<0.05). The other carcass traits were not significantly associated with ADCYAP1R1 genotypes(p>0.05). The genetic polymorphism of MYL2 and ADCYAP1R1 genes affected the carcass traits in finished pig population. Further studies to explain the association between genetic variations and their phenotypic effects including economic traits in pigs are required including critical mutation in both genes through molecular approaches.