• Title/Summary/Keyword: DNA intercalator

Search Result 11, Processing Time 0.026 seconds

Computer Graphics : Theoretical Study of Antibacterial Quinolone Derivatives as DNA-Intercalator (Computer Graphies : Quinolone계 항균제의 DNA-Intercalator에 관한 이론적 연구)

  • 서명은
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.78-84
    • /
    • 1995
  • Based on Computer graphics molecular modeling method, quinolone derivatives as DNA-gyrase inhibitors formed stable DNA-intercalation complex with deoxycytidilyl-3',5'-deoxy guanosine[d($C_{p}G)_{2}$] dinucleotide. When d($C_{p}G)_{2}$ and d($A_{p}T)_{2}$, were compared in order to find out which DNA could form more stable DNA-Drug complex based on interaction energy($\Delta$E) and DNA-Drug complex energy, d($C_{p}G)_{2}$ resulted in lower energy than d($A_{p}T)_{2}$.

  • PDF

Inhibitory Mechanism of a New Antitumor Agent DA125 on DNA Replication (새로운 항암제 DA-125의 유전자 복제 억제 기작)

  • 이상광;김도진;오유택;이상득;우은란;신차균
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.623-628
    • /
    • 1999
  • DA-125, a new antitumor agent, was compared with adriamycin, a known DNA intercalator, in terms of inhibitory mechanism of DNA replication by using replicating simian virus 40 (SV40) genome in vivo. In analyzing the SV40 DNA replication intermediates present in cells treated with DA-125, it was not observed to accumulate B-dimers of SV40 DNA which are prominent in adriamycin-treated cells. However, treatment with DA-125 induced dose-dependent formation of DNA-topoisomerase complex which is characteristic of topoisomerase poisons. In addition, DA-125 showed more efficient in inhibiting SV40 DNA replication than adriamycin. Therefore, on the basis of this observation, we suggest that DA-125, a derivative of adriamycin, inhibits DNA replication by blocking topoisomerase activity as a toposomerase poison although adriamycin blocks topoisomerase activity as a DNA intercalator.

  • PDF

Da-125 a New Antitumor Agent, Inhibits Topoisomerase II as Topoisomerase Poison and DNA Intercalator Simultaneously

  • Seo, Jin-Wook;Lee, Hak-Sung;Lee, Min-Jun;Kim, Mi-Ra;Shin, Cha-Gyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2004
  • DA-125, a novel derivative of adriamycin, is known for its anti-cancer activity. In this study, the inhibitory mechanism of DA-125 on topoisomerase was investigated in the simian virus 40 (SV40) replicating CV-1 cell by studying the SV40 DNA replication intermediates and DNA-topoisomerase complexes. DNA-protein complexes that were formed in the drug-treated cells were quantitated by using a glass filter assay. SV40 DNA replication intermediates that were accumulated in the drug-treated CV-1 cell were analyzed in a high resolution gel. DA-125 did not accumulate B-dimers of SV40 DNA replication intermediates which were found in the adriamycin-treated CV-1 cells. DA-125 induced a dose-dependent formation of the DNA-protein complexes, while adriamycin did not. When adriamycin and etoposide (VP16) were added to the SV40-infected cells at the same time, adriamycin blocked the formation of the DNA-protein complexes induced by VP16 in a dose-dependent manner. However, DA-125 blocked the formation of the DNA-protein complexes induced by VP16 up to the maximum level of the DNA-protein complexes that were induced by DA-125 alone. Adriamycin and DA-125 did not inhibit the formation of the DNA-protein complexes that were caused by camptothecin, a known topoisomerase I poison. DA-125 is bifunctional in inhibiting topoisomerase II because it simultaneously has the properties of the topoisomerase II poison and the DNA intercalator. As a topoisomerase II poison, DA-125 alone induced dose-dependent formation of the DNA-protein complexes. However, as a DNA intercalator, it quantitatively inhibited the formation of the DNA-protein complexes induced by a strong topoisomerase II poison VP16. Furthermore considering that the levels of the DNA-protein complex induced by VP16 were decreased by DA-125 in terms of the topoisomerase II poison, we suggest that DA-125 has a higher affinity to the drug-binding sites of DNA than VP16 has.

Electrochemical Signal Detecting Method for DNA Sequencing (DNA 염기서열 분석을 위한 전기화학적 신호 검출 방법)

  • Cho, S.B.;Hong, J.S.;Yang, S.J.;Kwon, K.M.;Han, S.O.;Kim, Y.M.;Pak, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1869-1871
    • /
    • 2001
  • DNA 센서의 중요한 역할 중의 하나는 염기서열을 분석함으로써 유전적인 질병이나 돌연변이를 찾아낸다는 점이다. 염기서열 분석법으로 질량, 광학, 전기 화학적 측정법 등이 있는데, 그 중 전기 화학적 측정방법이 타 방법에 비해 간편하고 비용도 저렴해서 전망이 매우 밝다. 전기 화학적 측정을 위해서는 전극의 표면 처리 공정과 전극 표면에서의 DNA immobilization, hybridization 공정 및 전기적 신호를 발생시키는 intercalator, 그리고 전기적 신호 검출을 위한 측정 장비가 필요하다. 본 논문에서는 전극의 표면 처리 물질로서 2-mercaptoethanol을 사용했고 double strand DNA의 intercalator로써 methylene blue를 사용했으며, methylene blue의 환원 전류값을 측정하여 double strand DNA를 bare Au 또는 single strand DNA와 구분할 수 있었다. 이러한 연구 결과를 토대로 하여 전기 화학적 신호 검출을 이용한 DNA 센서의 가능성과 개발 방향을 제시하고자 한다.

  • PDF

Cu(II) Complexes Conjugated with 9-Aminoacridine Intercalator: Their Binding Modes to DNA and Activities as Chemical Nuclease

  • Kim, Jung-Hee;Youn, Mi-Ryung;Lee, Young-Ae;Kim, Jong-Moon;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.263-270
    • /
    • 2007
  • New mono- and bis-Cu(II)-triazacyclononane(tacn) complex that conjugated with 9-aminoacridine were synthesized, and their binding modes and DNA cleavage activity were investigated in this study. When the classic intercalator, 9-aminoacridine, was conjugated to mono- and bis-Cu(II)-tacn complexes, a significant red-shift and hypochromism in absorption spectrum was apparent in the acridine absorption region upon binding to DNA. Furthermore, the magnitude of the negative reduced linear dichroism signal in the substrate absorption region appeared to be larger than that in the DNA absorption region. These spectral observations indicated that the acridine moiety intercalated when the Cu(II)-tacn complex was conjugated. In contrast, from a close analysis of the circular and linear dichroism spectrum, the aminoacridine-free bis-Cu(II)-tacn complex was concluded to bind at the phosphate groups of DNA. The 9-aminoacridine-free-bis-Cu(II)-tacn complex produces the nicked and linear DNA. On the other hand, 9-aminoacridine conjugated mono-and bis-Cu(II)-tacn complexes showed unspecific binding with negligible DNA cleavage.

Ionic Strength Dependent Binding Mode of 9-Aminoacridine to DNA

  • 김혜경;조태섭;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.358-362
    • /
    • 1996
  • The ionic strength dependent binding mode of 9-aminoacridine (9AA), a well-known DNA intercalator, to DNA is studied by flow linear dichroism, circular dichroism, fluorescence techniques and equilibrium dialysis. The DNA-bound 9AA exhibits spectral properties corresponding to the intercalative binding mode disregarding the salt concentrations; the angle between the long-axis transition moment of the 9AA molecule and DNA helix axis is calculated to be about 65°, indicating a significant deviation from the classical intercalation. At low salt concentrations, however, upwards bending curve in Stern-Volmer plot is observed (where 9AA is a fluorophore and DNA a quencher), indicating the coexistence of both static and dynamic quenching mechanisms or the existence of an additional binding site.

Electrochemical measurement for analysis of DNA sequence (DNA 염기서열 분석을 위한 전기 화학적 측정법)

  • Jo, Seong-Bo;Hong, Jin-Seop;Kim, Yeong-Mi;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.92-97
    • /
    • 2002
  • One of the important roles of a DNA chip is the capability of detecting genetic diseases and mutations by analyzing DNA sequence. For a successful electrochemical genotyping, several aspects should be considered including the chemical treatment of electrode surface, DNA immobilization on electrode, hybridization, choice of an intercalator to be selectively bound to double standee DNA, and an equipment for detecting and analyzing the output signal. Au was used as the electrode material, 2-mercaptoethanol was used for linking DNA to Au electrode, and methylene blue was used as an indicator that can be bound to a double stranded DNA selectively. From the analysis of reductive current of this indicator that was bound to a double stranded DNA on an electrode, a normal double stranded DNA was able to be distinguished from a single stranded DNA in just a few seconds. Also, it was found that the peak reduction current of indicator is proportional to the concentration of target DNA to be hybridized with probe DNA. Therefore, it is possible to realize a sim71e and cheats DNA sensor using the electrochemical measurement for genotyping.

Label-free Detection of Biomolecular Specific Interaction by Optical Biosensors (광 바이오센서를 이용한 비표지 생계물질들의 특이 상호작용력의 측정)

  • 김의락;최정우
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • Label-free optical methods for the monitoring of interactions between biological molecules have become increasingly popular within the last decade. A rising number of publications have demonstrated the benefits of direct biomolecular interaction analysis(BIA) for biology and biochemistry, such as antigen-antibody Interactions, receptor-ligand interactions, protein-DNA, DNA- intercalator, and DNA-DNA interactions. This article gives an overview of the historical development, principle and application of label-free optical biosensor to examine the functional characteristics of biospecific interaction, such as kinetics, affinity, and binding position of biomolecular between an immobilized species at the transducer surface and its dissolved binding partner.

DNA Ligand - Redox Active Molecule Conjugates as an Electrochemical DNA Probe

  • Ihara, Toshihiro;Maruo, Voshiyuki;Uto, Yoshihiro;Takenaka, Shigeori;Takagi, Makoto
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.887-894
    • /
    • 1995
  • Toward the development of universal, sensitive, and convenient method of DNA (or RNA) detection, two kinds of electrochemically active DNA ligands. acridine - viologen and oligonucleotide - ferrocene conjugate, were prepared. Thermodynamic and electrochemical study revealed that these probes bound strongly to DNA, and showed a typical cyclic voltammograms, indicating a potential for use as a reversible electrochemical labelling agent for DNA. Especially, using the electrochemically active oligonucleotide, we have been able to demonstrate the detection of DNA at femtomole levels by HPLC equipped with ordinary electrochemical detector (ECD). These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acid due to the stabilily of the complexes, high detection sensitivity, and wide applicability to the target structures (single- and double strands) and sequences.

  • PDF