• Title/Summary/Keyword: DNA homology

Search Result 688, Processing Time 0.025 seconds

Sequence and Characterization of the Genomic Clone of the FVFD16 and FVFD30 Gene Isolated from Flammulina velutipes (팽이버섯에서 분리된 FVFD16과 FVFD30 유전자의 게놈클론의 염기서열 및 특성)

  • Kim, Dool-Yi;Azuma, Tomo-Nori
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.26-31
    • /
    • 2000
  • We isolated genomic clone of FVFD16 and FVFD30 gene specifically expressed during fruit body formation of Flammulina velutipes [(Curt: Fr.) Sing] and determinated the sequences. The FVFD16 gene is including two introns in open reading frame, and FVFD30 gene is including four introns. The introns were matched GT/AG rule. The FVFD16 and FVFD30 genes contained CAAT box with similarity arrange and TATA box. CT-rich region was presented before the transcription start point. FVFD30 gene is investigated that expected the most activity of CCACC arrange. The result of FVFD16 gene analysis showed 80% homology by cDNA clone that is gene family. From the results of genomic southern blot analysis, we presumed more than two copy number gene family of FVFD16 and FVFD30 gene.

  • PDF

Subcloning and DNA Sequencing of the Phenol Regulatory Genes in Ralstonia eutropha JMP134 (Ralstonia eutropha JMP134에서 페놀분해에 관여하는 조절유전자의 Subcloning 및 염기서열 분석)

  • ;Subramanian Chitra
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • In this study, chromosomal DNA fragment related to the regulation of phenol metabolism in Ralstonia eutropha JMP 134 was cloned and sequenced. The result has shown that two open reading frames (ORF1 and ORF2) exist on this regulatory region. ORF1, which initiates from 454 bp downstream of the stop codon of the phenol hydroxylase genes, was found to be composed of 501 amino acids. ORF2, whose start codon is overlapped with the stop codon of ORFl, was found to contain 232 amino acids. The comparison of amino acid sequences with other proteins has revealed that ORF1 belongs to the family of NtrC transcriptional activator, whereas ORF2 shares high homology with the family of GntR protein, which is known to be a negative regulator. ORF1 and ORF2 were designated as a putative positive regulator, phlR2 and a negative regulator phlA, respectively. Possible regulatory mechanisms of phenol metabolism in this strain was discussed.

Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA

  • Eom, Ki Seong;Cheong, Jin Sung;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2019-2029
    • /
    • 2016
  • Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues ($Cys_2His_2$) coordinate to the zinc ion for the structural functions to generate a ${\beta}{\beta}{\alpha}$ fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known $Cys_2His_2$-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.

Identification of Fruit-specific cDNAs in a Ripened Inodorus Melon Using Differential Screening and the Characterization of on Abscisic Acid Responsive Gene Homologue

  • Hong, Se-Ho;Kim, In-Jung;Chung, Won-Il
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • Eight cDNAs corresponding to fruit-specific genes were isolated from ripened melon through differential screening. Sequence comparison indicated that six of these cDNAs encoded proteins were previously characterized into aminocyclopropane-1-carboxylate (ACC) oxidase, abscisic acid, stress and ripening inducible (ASR) gene, RINC-H2 zinc finger protein, pyruvate decarboxylase, or polyubiquitin. RFS2 and RFS5 were the same clone encoding polyubiquitin. The other cDNAs showed no significant homology with known protein sequences. The ASR homologue (Asr1) gene was further characterized on the cDNA and genomic structure. The deduced amino acid sequence had similar characteristics to other plant ASR. The Asr1 genomic DNA consisted of 2 exons and 1 intron, which is similar to the structure of other plants ASR genes. The promoter region of the Asr1 gene contained several putative functional cis-elements such as an abscisic acid responsive element (ABRE), an ethylene responsive element (ERE), a C-box or DPBf-1 and 2, Myb binding sites, a low temperature responsive element (LTRE) and a metal responsive element (MRE). The findings imply that these elements may play important roles in the response to plant hormones and environmental stresses in the process of fruit development. The results of this study suggest that the expressions of fruit specific and ripening-related cDNAs are closely associated with the stress response.

Identification of Bacteriocin-Producing Lactobacillus paraplantarum First Isolated from Kimchi

  • LEE JONG HOON;KIM MUIN;JEONG DO WON;KIM MIN JUNG;KIM JEONG HWAN;CHANG HAE CHOON;CHUNG DAE KYUN;KIM HAE YEONG;KIM KYOUNG HEON;LEE HYONG JOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.428-433
    • /
    • 2005
  • A bacteriocin-producing lactic acid bacterium with inhibitory activity against the growth of Lactobacillus plantarum was isolated from kimchi, a traditional Korean fermented vegetable. For the identification of the isolate, its 16S rDNA was sequenced. As a result, the sequence showed $99\%$ homology with those from Lactobacillus paraplantarum, Lb. plantarum, and Lactobacillus pentosus. For further identification of the isolate, the sequence of its 16S/23S rDNA spacer region was determined, and the sequence matched perfectly with that of Lb. paraplantarum. SDS­PAGE fingerprinting of whole-cell proteins of the isolate was almost identical with that of Lb. paraplantarum. The isolation and identification of Lb. paraplantarum suggest that Lb. paraplantarum is one of the lactic acid bacteria involved in kimchi fermentation.

Antioxidant Activity of a Chitin-degrading Bacterium Bacillus idriensis (CGH18) (키틴분해 박테리아 Bacillus idriensis (CGH18)의 항산화 활성)

  • Jung, Myoung Eun;Hong, Joo Wan;Lee, Jeong-Im;Kwak, Myoung Kuk;Kim, Hojun;Sohn, Jae Hak;Song, Young-Sun;Oh, Kwang-Suk;Seo, Youngwan
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • A bacterium CGH18 exhibiting antioxidizing and chitin-degrading activities in the colloidal chitin culture medium was isolated from salt-fermented crab. This strain was identified as Bacillus idriensis based on 16S rDNA sequence homology search. Its crude extract was partitioned between n-BuOH and $H_2O$. The organic layer was further partitioned between $CH_2$ $Cl_2$ and $H_2O$. Antioxidant activities of crude extract and its solvent fractions were evaluated using five different bioassay methods, including the degree of occurrence of intracellular reactive oxygen species (ROS), peroxynitrite scavenging (ONOO), and oxidative damage of genomic DNA. All fractions exhibited significant antioxidant activity in bioassay systems used.

Isolation and Characterization of Glycolate Oxidase Gene from Panax ginseng C. A. Meyer

  • Parvin, Shohana;Pulla, Rama Krishna;Kim, Yu-Jin;Sathiyaraj, Gayathri;Jung, Seok-Kyu;Khorolragchaa, Altanzul;In, Jun-Gyo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The oxidation of glycolate to glyoxylate, a key step in plant photorespiration, is carried out by the peroxisomal flavoprotein glycolate oxidase (EC 1.1.3.15). To investigate the altered gene expression and the role of GOX in ginseng plant defense system, a cDNA clone containing a GOX gene designated as PgGOX was isolated and sequenced from Panax ginseng. The cDNA was 692 nucleotides long and have an open reading frame of 552 bp with a deduced amino acid sequence of 183 residues. A GenBank BlastX search revealed that the deduced amino acid of PgGOX shares a high degree homology with the Glycine max (95% identity). In the present study we analyzed the expression of PgGOX under various environmental stresses at different times using real time-PCR. The results showed that the expressions of PgGOX increased after various treatments involving salt, light, cold, ABA, SA, and copper treatment.

Isolation and Characterization of a Type II Peroxiredoxin Gene from Panax ginseng C. A. Meyer

  • Kim, Yu-Jin;Lee, Jung-Hye;Lee, Ok-Ran;Shim, Ju-Sun;Jung, Seok-Kyu;Son, Na-Ri;Kim, Ju-Han;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.296-303
    • /
    • 2010
  • A peroxiredoxin cDNA (PgPrx) was isolated and characterized from the leaves of Panax ginseng. The cDNA is 716 nucleotides long and has an open reading frame of 489 base pairs with a deduced amino acid sequence of 162 residues. The calculated molecular mass of the mature protein is approximately 17.4 kDa with a predicted isoelectric point of 5.37. A GenBank BlastX search revealed that the deduced amino acid sequence of PgPrx shares a high degree homology with type II peroxiredoxin (Prx) proteins in other plants. The PgPrx gene was highly expressed in leaves, and expressed at a low level in the stem. To analyze the gene expression of PgPrx in response to various abiotic stresses, we utilized real-time quantitative RT-PCR. Our results reveal that PgPrx expression is induced by ultraviolet irradiation, low temperature, and salt. The induction of PgPrx in response to abiotic stimuli suggests that ginseng Prx may function to protect the host against environmental stresses.

Isolation and Characterization of Cinnamoyl-CoA Reductase Gene from Panax ginseng C. A. Meyer

  • Parvin, Shohana;Pulla, Rama Krishna;Shim, Ju-Sun;Kim, Yu-Jin;Jung, Dea-Yeoung;Kim, Se-Hwa;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.232-237
    • /
    • 2008
  • Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) catalyses the reduction of cinnamic acid CoA esters into their corresponding aldehydes, the first step of the phenylpropanoid pathway specially dedicated to monolignol biosynthesis. A cDNA clones encoding CCR have been isolated from Panax ginseng C.A. Meyer and its expression was investigated in response to abiotic stresses. The cDNA, designated PgCCR which is 865 nucleotides long and has an open reading frame of 590 bp with a deduced amino acid sequence of 176 residues. The PgCCR encoded protein possesses substantial homology with CCRs isolated and cloned from other sources; the highest identity (51.8%) was observed with CCR from Tomato (Lycopersicon esculentum). Under various stress conditions, expression patterns of the PgCCR were highly induced in adventitious and hairy roots by several abiotic stresses. These results indicated that PgCCR plays protective role against diverse environmental stresses.

miR-7b Promoter Contains Negative Gene Elements (네거티브 유전자 조절인자를 포함하는 마이크로RNA, miR-7b의 프로모터)

  • Choi, Ji-Woong;Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1784-1788
    • /
    • 2011
  • The typical miRNA and its nearby host gene are co-expressed by sharing the same promoter. We assumed that miR-7b and its host gene FICT might use an identical promoter for their brain specific gene expression. Sequence comparison of the genomic DNA of mouse miR-7b, human miR-7-3 and their host genes by using the bioinformatic tools revealed high sequence homology and several putative transcription factor-binding sites on the promoter region. In order to probe the hypothesis we used a luciferase vector system into which we cloned the 5' upstream conserved region of miR-7b and FICT. The putative promoter region showed decreased luciferase activity, suggesting that the 5' upstream of miR-7b and FICT contain a negative regulator for gene expression.