• Title/Summary/Keyword: DNA element

Search Result 226, Processing Time 0.029 seconds

Effects of Formononetin on the Aryl Hydrocarbon Receptor and 7,12-Dimethylbenz[a]anthracene-induced Cytochrome P450 1A1 in MCF-7 Human Breast Carcinoma Cells

  • Han, Eun-Hee;Jeong, Tae-Cheon;Jeong, Hye-Gwang
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2007
  • Formononetin is an isoflavonoid phytoestrogen found in certain foodstuffs such as soy and red clover. In this study, we examined the action of formononetin with the carcinogen activation pathway mediated through the aryl hydrocarbon receptor (AhR) in MCF-7 breast carcinoma cells. Treating the cells with formononetin alone caused the accumulation of CYP1A1 mRNA as well as elevation in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. However, a concomitant treatment with 7,12-dimethylbenz[a]anthracene (DMBA) and formononetin markedly reduced both the DMBA-inducible EROD activity and CYP1A1 mRNA level. Under the same conditions, formononetin inhibited the DMBA-induced AhR transactivation, as shown by reporter gene analysis using a xenobiotic responsive element (XRE). Additionally, formononetin inhibited both DMBA-inducible nuclear localization of the aryl hydrocarbon receptor (AhR) and metabolic activation of DMBA, as measured by the formation of the DMBA-DNA adducts. Furthermore, formononetin competed with the prototypical AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), for binding to the AhR in an isolated rat cytosol. These results suggest that formononetin might be considered as a natural ligand to bind on AhR and consequently produces a potent protective effect against DMBA-induced genotoxicity. Therefore, that's the potential to act as a chemopreventive agent that is related to its effect on AhR pathway as antagonist/agonist.

Characterization of Copper/Zinc-Superoxide Dismutase (Cu/Zn-SOD) Gene from an Endangered Freshwater Fish Species Hemibarbus mylodon (Teleostei; Cypriniformes)

  • Lee, Sang-Yoon;Kim, Keun-Yong;Bang, In-Chul;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.43-54
    • /
    • 2011
  • Gene structure of copper/zinc-superoxide dismutase (Cu/Zn-SOD; sod1) was characterized in Hemibarbus mylodon (Teleostei; Cypriniformes), an endangered freshwater fish species in Korean peninsula. Full-length cDNA of H. mylodon SOD1 consisted of a 796-bp open reading frame sequence encoding 154 amino acids, and the deduced polypeptide sequence shared high sequence homology with other orthologs, particularly with regard to metal-coordinating ligands. Genomic structure of the H. mylodon sod1 gene (hmsod1; 1,911 bp from the ATG start codon to the stop codon) was typical quinquepartite (i.e., five exons interrupted by four introns); the lengths of the exons were similar among species belonging to various taxonomic positions. The molecular phylogeny inferred from sod1 genes in the teleost lineage was in accordance with the conventional taxonomic assumptions. 5'-flanking upstream region of hmsod1, obtained using the genome walking method, contained typical TATA and CAAT boxes. It also showed various transcription factor binding motifs that may be potentially involved in stress/immune response (e.g., sites for activating proteins or nuclear factor kappa B) or metabolism of xenobiotic compounds (e.g., xenobiotic response element; XRE). The hmsod1 transcripts were ubiquitously detected among tissues, with the liver and spleen showing the highest and lowest expression, respectively. An experimental challenge with Edwardsiella tarda revealed significant upregulation of the hmsod1 in kidney (4.3-fold) and spleen (3.1-fold), based on a real-time RT-PCR assay. Information on the molecular characteristics of this key antioxidant enzyme gene could be a useful basis for a biomarker-based assay to understand cellular stresses in this endangered fish species.

Alu Methylation in Serum from Patients with Nasopharyngeal Carcinoma

  • Tiwawech, Danai;Srisuttee, Ratakorn;Rattanatanyong, Prakasit;Puttipanyalears, Charoenchai;Kitkumthorn, Nakarin;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9797-9800
    • /
    • 2014
  • Background: Nasopharyngeal carcinoma (NPC) is a common cancer in Southern China and Southeast Asia. Alu elements are among the most prevalent repetitive sequences and constitute 11% of the human genome. Although Alu methylation has been evaluated in many types of cancer, few studies have examined the levels of this modification in serum from NPC patients. Objective: To compare the Alu methylation levels and patterns between serum from NPC patients and normal controls. Materials and Methods: Sera from 50 NPC patients and 140 controls were examined. Quantitative combined bisulfite restriction analysis-Alu (qCOBRA-Alu) was applied to measure Alu methylation levels and characterize Alu methylation patterns. Amplified products were classified into four patterns according to the methylation status of 2 CpG sites: hypermethylated (methylation at both loci), partially methylated (methylation of either of the two loci), and hypomethylated (unmethylated at both loci). Results: A comparison of normal control sera with NPC sera revealed that the latter presented a significantly lower methylation level (p=0.0002) and a significantly higher percentage of hypomethylated loci (p=0.0002). The sensitivity of the higher percentage of Alu hypomethyted loci for distinguishing NPC patients from normal controls was 96%. Conclusions: Alu elements in the circulating DNA of NPC patients are hypomethylated. Moreover, Alu hypomethylated loci may represent a potential biomarker for NPC screening.

Functional Analysis of the Putative BUB2 Homologues of C. elegans in the Spindle Position Checkpoint

  • Lee, Kyung-Hee;Song, Ki-Won
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.87-94
    • /
    • 2005
  • Spindle position checkpoint monitors the orientation of mitotic spindle for proper segregation of replicated chromosomes into mother cell and the daughter, and prohibits mitotic exit when mitotic spindle is misaligned. BUB2 forms one of the key upstream element of spindle position checkpoint in budding yeast, but its functional homologues have not been identified in higher eukaryotes. Here, we analyzed the functions of two putative BUB2 homologues of C. elegans in the spindle orientation checkpoint. From the C. elegans genome database, we found that two open reading frames (ORFs), F35H12_2 and C33F10_2, showed high sequence homology with BUB2. We obtained the expressed sequence tag (EST) clones for F35H12_2 (yk221d4) and C33F10_2 (yk14e10) and verified the full cDNA for each ORF by sequencing and 5' RACE with SL1 primer. The functional complementation assays of yk221d4 and yk14e10 in ${\Delta}bub2$ of S. cerevisiae revealed that these putative BUB2 homologues of C. elegans could not replace the function of BUB2 in spindle position checkpoint and mitotic exit. Our attempt to document the component of spindle position checkpoint in metazoans using sequence homology was not successful. This suggests that structural information about its components might be required to identify functional homologues of the spindle position checkpoint in higher eukaryotes.

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.89-89
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Constitutive androstane receptor (CAR) also regulates the transcription of gene. In this study, we have examined how RAR, RXR and CAR regulated CYP1A1 in rainbow trout hepatoma cell (RTH 149) using luciferase reporter gene assay system. We did transient transfection with CYP1A1 luciferase reporter gene and treated with TCDD, all-trans RA, 9-cis RA and phenobarbital. Treatment of all-trans RA, 9-cis RA or phenobarbital decreased the TCDD induced transcription of CYP1Al. When we did transient cotransfection with CYP1A1 luciferase reporter gene and RXR, as increase of RXR concentration, the TCDD induced transcription of CYP1A1 was decreased. Transfection with CAR also decreased the TCDD induced transcription of CYP1A1 in RTH 149 cells.

  • PDF

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Polymorphism of the Promoter Region of Hsp70 Gene and Its Relationship with the Expression of HSP70mRNA, HSF1mRNA, Bcl-2mrna and Bax-AMrna in Lymphocytes in Peripheral Blood of Heat Shocked Dairy Cows

  • Cai, Yafei;Liu, Qinghua;Xing, Guangdong;Zhou, Lei;Yang, Yuanyuan;Zhang, Lijun;Li, Jing;Wang, Genlin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.734-740
    • /
    • 2005
  • The blood samples were collected from dairy cows at the same milking stage. The single-strand conformation polymorphism (PCR-SSCP) method was used to analyze for polymorphism at the 5'flanking region of the hsp70 gene. The mRNA expression levels of HSP70, HSF1, Bcl-2 and Bax-$\alpha$ at different daily-mean-temperature were analyzed by relative quantitative RTPCR. The DNA content, cell phase and the ratio of apoptosis of lymphocytes in peripheral blood of dairy cattle at different daily-meantemperature were determined by FCM. The PCR-SSCP products of primer pair 1 showed polymorphisms and could be divided into four genotypes: aa, ab, ac, cc, with the cis-acting element (CCAAT box) included. Mutations in the hsp70 5'flanking region (468-752 bp) had different effects on mRNA expression of HSP70, HSF1, Bcl-2 and Bax-$\alpha$. The ac genotypic cows showed higher expressions of HSP70mRNA, HSF1mRNA and Bcl-2mRNA/Bax-$\alpha$mRNA and lower ratio of apoptosis. These mutation sites can be used as molecular genetic markers to assist selection for anti-heat stress cows.

Comparison of Different PCR-Based Genotyping Techniques for MRSA Discrimination Among Methicillin-Resistant Staphylococcus aureus Isolates

  • Kim, Keun-Sung;Seo, Hyun-Ah;Oh, Chang-Yong;Kim, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.788-797
    • /
    • 2001
  • The usefulness of three PCR methods were evaluated for the epidemiological typing of Staphylococcus aureus: an enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), repetitive extragenic palindromic element PCR (REP-PCR), and 16S-23S intergenic spacer PCR (ITS-PCR). The analysis was performed using a collection of S. aureus strains comprised of 6 reference and 79 isolates from patients with various diseases. Among the 85 S. aureus strains tested, 6 references and 6 isolates were found to be susceptible to methicillin, whereas the remaining 73 isolates were resistant to it. PCR methods are of special concern, as conventional phenotypic methods are unable to clearly distinguish among methicillin-resistant S. aureus (MRSA) strains. The ability of the techniques to detect different unrelated types was found to be as follows: ERIC-PCR, 19 types; REP-PCR, 36 types; and ITS-PCR, 14 types. On the basis of combining the ERIC, REP, and ITS fingerprints, the 85 S. aureus strains were grouped into 56 genetic types (designated G1 to G56). The diversities for the 85 S. aureus strains, calculated according to Simpson\`s index, were 0.88 for an ERIC-PCR, 0.93 for a REP-PCR, and 0.48 for an ITS-PCR, and the diversity increased up to 0.97 when an ERIC-PCR and REP-PCR were combined. The above discrimination indices imply that the genetic heterogeneity of S. aureus strains is high. Accordingly, this study demonstrates that DNA sequences from highly conserved repeats of a genome, particularly a combination of ERIC sequences and REP elements, are a convenient and accurate tool for the subspecies-specific discrimination and epidemiologic tracking of S. aureus.

  • PDF

Suppression of Ku80 Correlates with Radiosensitivity and Telomere Shortening in the U2OS Telomerase-negative Osteosarcoma Cell Line

  • Hu, Liu;Wu, Qin-Qin;Wang, Wen-Bo;Jiang, Huan-Gang;Yang, Lei;Liu, Yu;Yu, Hai-Jun;Xie, Cong-Hua;Zhou, Yun-Feng;Zhou, Fu-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.795-799
    • /
    • 2013
  • Ku70/80 heterodimer is a central element in the nonhomologous end joining (NHEJ) DNA repair pathway, Ku80 playing a key role in regulating the multiple functions of Ku proteins. It has been found that the Ku80 protein located at telomeres is a major contributor to radiosensitivity in some telomerase positive human cancer cells. However, in ALT human osteosarcoma cells, the precise function in radiosensitivity and telomere maintenance is still unknown. The aim of this study was to investigate the effects of Ku80 depletion in the U2OS ALT cell line cell line. Suppression of Ku80 expression was performed using a vector-based shRNA and stable Ku80 knockdown in cells was verified by Western blotting. U2OS cells treated with shRNA-Ku80 showed lower radiobiological parameters (D0, Dq and SF2) in clonogenic assays. Furthermore, shRNA-Ku80 vector transfected cells displayed shortening of the telomere length and showed less expression of TRF2 protein. These results demonstrated that down-regulation of Ku80 can sensitize ALT cells U2OS to radiation, and this radiosensitization is related to telomere length shortening.

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.179-179
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Constitutive androstane receptor (CAR) also regulates the transcription of gene. In this study, we have examined how RAR, RXR and CAR regulated CYP1A1 in rainbow trout hepatoma cell (RTH 149) using luciferase reporter gene assay system. We did transient transfection with CYP1A1 luciferase reporter gene and treated with TCDD, all-trans RA, 9-cis RA and phenobarbital. Treatment of all-trans RA, 9-cis RA or phenobarbital decreased the TCDD induced transcription of CYP1A1. When we did transient cotransfection with CYP1A1 luciferase reporter gene and RXR, as increase of RXR concentration, the TCDD induced transcription of CYP1A1 was decreased. Transfection with CAR also decreased the TCDD induced transcription of CYP1A1 in RTH 149 cells.

  • PDF