• Title/Summary/Keyword: DNA delivery

Search Result 194, Processing Time 0.029 seconds

Effect of Drug Loading on the Physicochemical Properties and Stability of Cationic Lipid-based Plasmid DNA Complexes

  • Jeong, Ui-Hyeon;Jung, Ji-Hye;Davaa, Enkhzaya;Park, Se-Jin;Myung, Chang-Seon;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.339-343
    • /
    • 2009
  • Recently, co-delivery of drug and gene has been attempted for higher therapeutic effects of anticancer agents. In this study, cationic liposomes were prepared using 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP) as a cationic lipid to investigate the effect of drug loading on the physicochemical characteristics of cationic liposomes/DNA complexes. The complex formation between cationic liposomes and negatively charged plasmid DNA was confirmed and the protection from DNase was observed. Particle size of complexes was reduced not by drug loading, but by the increased ratio of cationic lipid to plasmid DNA. Meanwhile, zeta potential of complex was increased by the addition of cationic liposomes to complexes and the effect of drug loading on the zeta potential was not much higher than on particle size. Gel retardation of complexes was indicated when the complexation weight ratios of cationic lipid to plasmid DNA were higher than 24:1 for drug free complexes and 20:1 for drug loaded ones, respectively. Agarose gel retardation showed the similar complexation between plasmid DNA and drug free liposomes or drug loaded liposomes. Both complexes protected plasmid DNA from DNase independent of complexation temperature. From the results, drug loading may affect not the complex formation of cationic liposomes and plasmid DNA, but the particle size of complex.

Photoprotection by Topical DNA Repair Enzymes

  • Yarosh, Daniel B.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.186-189
    • /
    • 2002
  • Many of the adverse effects of solar UV exposure appear to be directly attributable to damage to epidermal DNA. In particular, cyclobutane pyrimidine dimers (CPD) may initiate mutagenic changes as well as induce signal transduction responses that lead to a loss of skin immune surveillance and micro-destruction of skin structure. Our approach is to reverse the DNA damage using prokaryotic DNA repair enzymes delivered into skin using specially engineered liposomes. T4 endonuclease V encapsulated in liposomes (T4N5 liposome lotion) enhanced DNA repair by shifting repair of CPD from the nucleotide excision to the base excision repair pathway. Following topical application to humans, increased repair limited UV-induction of cytokines, many of which are immunosuppressive. In a recent clinical study, topical treatment of UV-irradiated human skin with T4N5 liposome lotion reduced the suppression of the nickel sulfate contact hypersensitivity response. Similarly, the photoreactivating enzyme enhances repair by directly reversing CPDs after absorbing activating light. Here also treatment of UV-irradiated human skin with photoreactivating enzyme in liposomes and photoreactivating light restored the response to the contact allergen nickel sulfate. These findings confirm in humans the observation in mice that UV induced suppression of contact hypersensitivity is caused in part by CPDs. We have tested the ability of T4N5 liposome lotion to prevent UV-induced skin cancer in patients with xeroderma pigmentosum (XP), who have an elevated incidence of skin cancer resulting from a genetic defect in DNA repair. Daily use of the lotion for one year in a group of 20 XP patients reduced the average number of actinic keratoses by 68% and basal cell cancers by 30% compared to 9 patients in the placebo control group. Delivery of DNA repair enzymes to skin is a promising new approach to photoprotection.

  • PDF

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang;Ki Hong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.

Direct Intramuscular Gene Transfer of Naked DNA Expressing Human Vascular Endothelial Growth Factor (pCK-VEGF) Enhances Collateral Growth in a Rabbit Ischemic Hind Limb Model (토끼 허혈성 하지 모델에서 VEGF 발현 Naked DNA 벡터인 pCK-VEGF의 근육내 투여가 측부혈관형성에 미치는 영향)

  • 채제건;전현순;박은진;김종묵;김덕경;김선영
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.108-115
    • /
    • 2001
  • We have recently reported the development of a high efficiency expression vector, pCK, which can drive a high level of gene expression in mouse skeletal muscle. In this study, we tested the therapeutic potential of pCK expressing human VEGF165, pCK-VEGF in the rabbit ischemic hind limb model. To determine the optimal dose of plasmid DNA, various concentrations of pCK-CAT were injected into the muscle of a rabbit hind limb and the levels of CAT activity were determined. It was found that the expression level of the exogenously added gene became stable between 250 and 1,000 $\mu$g. Based on this result, we tested whether intramuscular transfer of 500$\mu$g of pCK-VEGF could actually modulate collateral vessel development in a rabbit ischemic hind limb model. It was found that relative to the control group injected with the pCK lacking the VEGF sequence, single intramuscular doses (500$\mu$g) of pCK-VEGF produced statistically significant augmentation of collateral vessels as determined by the angiographic vessel count, maximal blood flow by Doppler flowmeter and the number of capillaries by histology. These results suggest that a single 500$\mu$g-delivery of pCK-VEGF is potent enough to induce sufficient angiogenic activity and achieve therapeutic benefit on this rabbit model.

  • PDF

Osteogenic effects of polyethyleneimine-condensed BMP-2 genes in vitro and in vivo (Polyethyleneimine-응축 BMP-2 발현 유전자를 이용한 골형성 효과)

  • Cheong, Hee-Sun;Kim, Kyoung-Hwa;Park, Yoon-Jeong;Kim, Tae-Il;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Lee, Dong-Soo;Lee, Seung-Jin;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.859-869
    • /
    • 2007
  • Naked DNA and standard vectors have been previously used for gene delivery. Among these, PEI can efficiently condense DNA and has high intrinsic endosomal activities. The aim of this study is to investigate whether the cationic polycation PEI could increase the transfection efficiency of BMP expressing DNA using a vector-loaded collagen sponge model. BMP-2/pcDNA3.1 plasmid was constructed by subcloning human BMP-2 cDNA into the pcDNA3.1 plasmid vector. PEI/DNA complexes were prepared by mixing PEI and BMP-2/pcDNA3.1 and the constructed complexes were loaded into the collagen sponges. In vitro studies, BMSCs were transfected with the PEI/BMP-2/pcDNA3.1 complexes from collgen sponge. The level of secreted BMP-2 and alkaline phosphatase activities of transfected BMSCs were significantly higher in PEI/BMP-2/pcDNA3.1 group than in BMP-2/pcDNA3.1 group (p<0.05). Transfected BMSCs were cultured and mineralization was observed only in cells treated with PEI/BMP-2/pcDNA3.1 complexes. In vivo studies, PEI/BMP-2/pcDNA3.1/collagen, BMP-2/pcDNA3.1/collagen and blank collagen were grafted in skeletal muscle of nude mice. Ectopic bone formation was shown in PEI/BMP-2/pcDNA3.1/collagen grafted mouse 4 weeks postimplantation, while not in BMP-2/pcDNA3.1 grafted tissue. This study suggests that PEI-condensed DNA encoding for BMP-2 is capable of inducing bone formation in ectopic site and might increase the transfection rate of BMP-2/pcDNA3.1. As a non-viral vector, PEI offers the potential in gene therapy for bone engineering.

Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery (효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성)

  • Heo, Sun-Heang;Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.454-459
    • /
    • 2007
  • Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In $^1H-NMR$ spectra, specific peaks appeared both of FA and LMWSC in $D_2O$. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. hi vitro transfection efficiency was assayed by fluorescence spectroscopy WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.

Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair (세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구)

  • Kim, Seon-Hwa;Hwang, Changmo;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.

Enhanced Tumor-targeted Gene Delivery by Immunolipoplexes Conjugated with the Humanized Anti-TAG-72 Fab' Fragments

  • Kim, Keun-Sik;Park, Yong-Serk;Hong, Hyo-Jeong;Kim, Kwang-Pyo;Lee, Kwang-Hyun;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.651-656
    • /
    • 2012
  • Cationic immunoliposomes were prepared by conjugation of Fab' fragments of the recombinant humanized monoclonal antibody (HuCC49) against tumor-associated glycoprotein (TAG)-72 to sterically unilamella liposomes. The cationic immunoliposomes are composed of cationic lipid (O,O'-dimyristyl-N-lysyl aspartate, DMKD), cholesterol, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)$_{2000}$] (DPPE-PEG-maleimide) with a molar ratio of 0.5:0.47:0.03. Plasmid DNA was effectively condensed by addition of transferrin (Tf) during the formation of anti-TAG-72 PEG-immunolipoplexes (PILPs). These anti-TAG-72 PILPs were able to adhere to the surface of TAG-72-overexepressing LS174T human colon cancer cells more effectively than conventional liposomes, thereby facilitating gene delivery in vitro. Furthermore, intravenous administration of the anti-TAG-72 PILPs into the tumor-carrying mice exhibited efficient localization of the reporter gene in the tumor tissues.

Optimization of Gene Delivery Mediated by Lipoplexes and Electroporation into Mouse Mesenchymal Stem Cells

  • Kim, Jong-Chul;Kim, Hong-Sung;Lee, Yeon-Kyung;Kim, Jung-Seok;Park, Sang-Il;Jung, Hwa-Yeon;Park, Yong-Serk
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • Recently, mesenchymal stem cells (MSCs) began to be utilized as a vehicle for ex vivo gene therapy based on their plasticity. Effective and safe transfection of therapeutic genes is a critical step for genetic modification of MSCs. Therefore, optimization of in vitro gene delivery into MSCs is essential to provide genetically modified stem cells. In this study, various cationic liposomes, O,O'-dimyristyl-N-lysyl aspartate (DMKD), DMKD/cholesterol, O,O'-dimyristyl-N-lysyl glutamate (DMKE), DMKE/cholesterol, and N-[1-(2,3-dioleoyloxy)]-N,N,N-trimethylammonium propane methyl sulfate (DOTAP)/cholesterol, were mixed with plasmid DNA encoding luciferase (pAAV-CMV-Luc) at varied ratios, and then used for transfection to MSCs under varied conditions. The MSCs were also transfected by electroporation under varied conditions, such as voltage, pulse length, and pulse interval. According to the experimental results, electroporation-mediated transfection was more efficient than cationic liposome-mediated transfection. The best MSC transfection was induced by electroporation 3 times pulses for 2 ms at 200 V with 10 seconds of a pulse interval.

  • PDF

Nonionic Amphiphilic Surfactant Conjuncted Polyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier

  • Yin, Dongfeng;Chu, Cang;Ding, Xueying;Gao, Jing;Zou, Hao;Gao, Shen
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • In order to enhance the gene delivery efficiency and decrease the cytotoxicity of polyplexes, we synthesized Solutol-g-PEI by conjugating polyethyleneimine (PEI) to Solutol (polyoxyethylene (10) stearate), and evaluated its efficiency as a possible nonviral gene carrier candidate. Structural analysis of synthesized polymer was performed by using $^1H$-NMR. Gel retardation assay, particle sizes and zeta potential measurement confirmed that the new gene carrier formed a compact complex with plasmid DNA. The complexes were smaller than 150 nm, which implicated its potential for intracellular delivery. It showed lower cytotoxicity in three different cell lines (Hela, MCF-7, and HepG2) than PEI 25 kDa. pGL3-lus was used as a reporter gene, and the transfection efficiency was in vitro measured in Hela cells. Solutol-g-PEI showed much higher transfection efficiency than unmodified PEI 25 kDa.