• 제목/요약/키워드: DNA data

검색결과 2,044건 처리시간 0.033초

Molecular Identification of Anginosus Group Streptococci Isolated from Korean Oral Cavities

  • Park, Soon-Nang;Choi, Mi-Hwa;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제38권1호
    • /
    • pp.21-27
    • /
    • 2013
  • Anginosus group streptococci (AGS) were classified based on the nucleotide sequences of the 16S rRNA gene (16S rDNA) and comprised Streptococcus anginosus, Streptococcus intermedius, and Streptococcus constellatus. It is known that AGS is a causative factor of oral and systematic diseases. The purpose of this study was to discriminate the 56 clinical strains of AGS isolated from Korean oral cavities using phylogenetic analysis of 16S rDNA and species-specific PCR at the species-level. The 16S rDNA of clinical strains of AGS was sequenced using the dideoxy chain termination method and analyzed using MEGA version 5 software. PCR was performed to identify the clinical strains using species-specific primers described in previous studies and S. intermedius-specific PCR primers developed in our laboratory. The resulting phylogenetic data showed that the 16S rDNA sequences can delineate the S. anginosus, S. intermedius, and S. constellatus strains even though the 16S rDNA sequence similarity between S. intermedius and S. constellatus is above 98%. The PCR data showed that each species-specific PCR primer pair could discriminate between clinical strains at the species-level through phylogenetic analysis of 16S rDNA nucleotide sequences. These results suggest that phylogenetic analysis of 16S rDNA and PCR are useful tools for discriminating between AGS strains at the species-level.

Molecular Systematics of the Tephritoidea (Insecta: Diptera): Phylogenetic Signal in 16S and 28S rDNAs for Inferring Relationships Among Families

  • Han, Ho-Yeon;Ro, Kyung-Eui;Choi, Deuk-Soo;Kim, Sam-Kyu
    • Animal cells and systems
    • /
    • 제6권2호
    • /
    • pp.145-151
    • /
    • 2002
  • Phylogenetic signal present in the mitochondrial 16S ribosomal RNA gene (16S rDNA) and the nuclear large subunit ribosomal RNA gene (28S rDNA) was explored to assess their utility in resolving family level relationships of the superfamily Tephritoidea. These two genes were chosen because they appear to evolve at different rates, and might contribute to resolve both shallow and deeper phylogenetic branches within a highly diversified group. For the 16S rDNA data set, the number of aligned sites was 1,258 bp, but 1,204 bp were used for analysis after excluding sites of ambiguous alignment. Among these 1,204 sites, 662 sites were variable and 450 sites were informative for parsimony analysis. For the 28S rDNA data set, the number of aligned sites was 1,102 bp, but 1,000 bp were used for analysis after excluding sites of ambiguous alignment. Among these 1000 sites, 235 sites were variable and 95 sites were informative for parsimony analysis. Our analyses suggest that: (1) while 16S rDNA is useful for resolving more recent phylogenetic divergences, 28S rDNA can be used to define much deeper phylogenetic branches; (2) the combined analysis of the 16S and 28S rDNAs enhances the overall resolution without losing phylogenetic signal from either single gene analysis; and (3) additional genes that evolve at intermediate rates between the 16S and 28S rDNAs are needed to further resolve relationships among the tephritoid families.

환경 DNA 메타바코딩을 활용한 멧돼지 및 육상 포유류 출현 모니터링 - 경기도 양평군 일대를 중심으로 - (Monitoring the presence of wild boar and land mammals using environmental DNA metabarcoding - Case study in Yangpyeong-gun, Gyeonggi-do -)

  • 김용환;한윤하;박지윤;김호걸;조수현;송영근
    • 한국환경복원기술학회지
    • /
    • 제24권6호
    • /
    • pp.133-144
    • /
    • 2021
  • This study aims to estimate location of land mammals habitat by analyzing spatial data and investigate how to apply environmental DNA monitoring methodology to lotic system in Yangpyeong-gun, Gyeonggi-do. Environmental DNA sampling points are selected through spatial analysis with QGIS open source program by overlaying Kernel density of wild boar(Sus scrofa), elevation, slope and land-cover map, and 81 samples are collected. After 240 mL of water was filtered in each sample, metabarcoding technique using MiMammal universal primer was applied in order to get a whole list of mammal species whose DNA particles contained in filtered water. 8 and 22 samples showed DNA of wild boar and water deer, respectively. DNA of raccoon dog, Eurasian otter, and Siberian weasel are also detected through metabarcoding analysis. This study is valuable that conducted in outdoor lotic system. The study suggests a new wildlife monitoring methodology integrating overlayed geographic data and environmental DNA.

Modeling Species Distributions to Predict Seasonal Habitat Range of Invasive Fish in the Urban Stream via Environmental DNA

  • Kang, Yujin;Shin, Wonhyeop;Yun, Jiweon;Kim, Yonghwan;Song, Youngkeun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제3권1호
    • /
    • pp.54-65
    • /
    • 2022
  • Species distribution models are a useful tool for predicting future distribution and establishing a preemptive response of invasive species. However, few studies considered the possibility of habitat for the aquatic organism and the number of target sites was relatively small compared to the area. Environmental DNA (eDNA) is the emerging tool as the methodology obtaining the bulk of species presence data with high detectability. Thus, this study applied eDNA survey results of Micropterus salmoides and Lepomis macrochirus to species distribution modeling by seasons in the Anyang stream network. Maximum Entropy (MaxEnt) model evaluated that both species extended potential distribution area in October compared to July from 89.1% (12,110,675 m2) to 99.3% (13,625,525 m2) for M. salmoides and 76.6% (10,407,350 m2) to 100% (13,724,225 m2) for L. macrochirus. The prediction value by streams was varied according to species and seasons. Also, models elucidate the significant environmental variables which affect the distribution by seasons and species. Our results identified the potential of eDNA methodology as a way to retrieve species data effectively and use data for building a model.

근사 알고리즘을 이용한 순차패턴 탐색 (Searching Sequential Patterns by Approximation Algorithm)

  • 산사볼트가람라흐차;황영섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.29-36
    • /
    • 2009
  • 서열데이터베이스에 있는 자주 발현하는 부분 서열을 패턴으로 찾아내는 순차패턴 탐색은 넓은 응용 분야를 가지는 중요한 데이터 마이닝 문제이다. DNA 서열에서 순차패턴이 모티프가 될 수 있으므로 DNA 서열에서 순차패턴을 찾는 것을 연구하였다. 대부분의 기존 마이닝 방법은 순차패턴의 정의에 따라 정확한 정합에 주력하여 노이즈가 있는 환경이나 실제 문제에서 발생하는 부정확한 데이터에 대하여 제대로 작동하지 않을 수 있다. 이러한 문제가 생물 데이터인 DNA 서열에서 자주 나타난다. 이러한 문제를 다루기 위한 근사 정합 방법을 연구하였다. 본 연구의 아이디어는 자주 발생하는 패턴을 근사 패턴이라 부르는 그룹으로 분류할 수 있다는 관찰에서 기반을 둔다. 기존의 Prefixspan 알고리즘은 주어진 긴 서열에서 순차패턴을 잘 찾을 수 있다. 본 연구는 Prefixspan 알고리즘을 개선하여 유사한 순차패턴을 찾을 수 있게 하였다. 실험 결과는 PreFixSpan보다 제안한 방법이 패턴 길이가 4일 때, 근사 순차패턴의 빈도가 5배 높아짐을 보였다.

Ser1778 of 53BP1 Plays a Role in DNA Double-strand Break Repairs

  • Lee, Jung-Hee;Cheong, Hyang-Min;Kang, Mi-Young;Kim, Sang-Young;Kang, Yoon-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.343-348
    • /
    • 2009
  • 53BP1 is an important genome stability regulator, which protects cells against double-strand breaks. Following DNA damage, 53BP1 is rapidly recruited to sites of DNA breakage, along with other DNA damage response proteins, including ${\gamma}$-H2AX, MDC1, and BRCA1. The recruitment of 53BP1 requires a tandem Tudor fold which associates with methylated histones H3 and H4. It has already been determined that the majority of DNA damage response proteins are phosphorylated by ATM and/or ATR after DNA damage, and then recruited to the break sites. 53BP1 is also phosphorylated at several sites, like other proteins after DNA damage, but this phosphorylation is not critically relevant to recruitment or repair processes. In this study, we evaluated the functions of phosphor-53BP1 and the role of the BRCT domain of 53BP1 in DNA repair. From our data, we were able to detect differences in the phosphorylation patterns in Ser25 and Ser1778 of 53BP1 after neocarzinostatin-induced DNA damage. Furthermore, the foci formation patterns in both phosphorylation sites of 53BP1 also evidenced sizeable differences following DNA damage. From our results, we concluded that each phosphoryaltion site of 53BP1 performs different roles, and Ser1778 is more important than Ser25 in the process of DNA repair.

Molecular Phylogenetic Relationships Within the Genus Alexandrium(Dinophyceae) Based on the Nuclear-Encoded SSU and LSU rDNA D1-D2 Sequences

  • Kim, Choong-Jae;Sako Yoshihiko;Uchida Aritsune;Kim, Chang-Hoon
    • Journal of the korean society of oceanography
    • /
    • 제39권3호
    • /
    • pp.172-185
    • /
    • 2004
  • LSU rDNA D1-D2 and SSU rDNA genes of 23 strains in seven Alexandrium (Halim) species, A. tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid), A. fraterculus (Balech) Balech, A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo and A. tamiyavanichii Balech, were sequenced and the data were used for molecular phylogenetic analysis. The sequence data revealed 11 and 7 ribotypes in the LSU rDNA D1-D2 region and 4 and 17 ribotypes in the SSU rDNA region of A. catenella and A. tamarense, respectively. Other Alexandrium species had also 1 to 5 ribotypes in the two regions. With the exception of CMC2 and CMC3 of A. catenella, all A. tamarense and A. catenella strains had a common ribotype, a functionally expressed rRNA gene (here termed type A), in both gene regions. In addition to the functionally expressed gene, several pseudogenes were obtained that were found to be good tools to analyze the population designation of regional isolates by grouping them according to shared ribotypes. From the phylogenetic analysis of the sequence data determined in this study and retrieved from GenBank, the genus Alexandrium was divided into 14 groups: 1) A. tamarense, 2) A. excavatum, 3) A. catenella, 4) Tasmanian A. tamarense, 5) A. affine (and/or A. concavum), 6) Thai A. tamarense, 7) A. tamiyavanichii, 8) A. fraterculus, 9) A. margalefii, 10) A. andersonii, 11) A. ostenfeldii, 12) A. minutum (or A. lusitanicum), 13) A. insuetum, and 14) A. pseudogonyaulax. The SSU rDNA gene sequence of A. fundyense was so similar to those of A. tamarense used in this study that the two species were difficult to discriminate each other. A. tamiyavanichii was closest to the A. tamarense strain isolated in Thailand and close to the long chain-forming species of A. affine and A. fraterculus. The phylogenetic tree showed that A. margalefii, A. andersonii, A. ostenfeldii, A. minutum and A. insuetum constituted the basal relative complex, and that A. pseudogonyaulax is an ancestral taxon in the genus Alexandrium.

A New Record of Prionospio depauperata (Annelida: Polychaeta: Spionidae) with DNA Barcoding Data of Four Prionospio Species in South Korea

  • Lee, Geon Hyeok;Yoon, Seong Myeong;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.382-386
    • /
    • 2020
  • In this study, Prionospio depauperata Imajima, 1990 is newly reported in Korean fauna. Prionospio depauperata can be distinguished from other relatives by the four pairs of branchiae which are pinnate on chaetigers 2 and 5, and apinnate on chaetigers 3 and 4; caruncle extending to the end of chaetiger 2; and moderate dorsal crest present on chaetigers 7-13. The morphological diagnosis of P. depauperata are provided with the photographs of four Prionospio species. The mitochondrial cytochrome c oxidase subunit 1 (CO1), 16S ribosomal DNA (16S rDNA), and the nuclear 18S ribosomal DNA (18S rDNA) sequences of four Prionospio species from Korean waters, P. depauperata Imajima, 1990, P. japonica Okuda, 1935, P. krusadensis Fauvel, 1929, and P. membranacea Imajima, 1990, were determined for the first time. The inter-specific genetic distances among the congeners of four Prionospio species were 22.3-29.6% in CO1, 10.5-25.0% in 16S rDNA, and 0.3-3.6% in 18S rDNA.

Global Optimization of Clusters in Gene Expression Data of DNA Microarrays by Deterministic Annealing

  • Lee, Kwon Moo;Chung, Tae Su;Kim, Ju Han
    • Genomics & Informatics
    • /
    • 제1권1호
    • /
    • pp.20-24
    • /
    • 2003
  • The analysis of DNA microarry data is one of the most important things for functional genomics research. The matrix representation of microarray data and its successive 'optimal' incisional hyperplanes is a useful platform for developing optimization algorithms to determine the optimal partitioning of pairwise proximity matrix representing completely connected and weighted graph. We developed Deterministic Annealing (DA) approach to determine the successive optimal binary partitioning. DA algorithm demonstrated good performance with the ability to find the 'globally optimal' binary partitions. In addition, the objects that have not been clustered at small non­zero temperature, are considered to be very sensitive to even small randomness, and can be used to estimate the reliability of the clustering.

2-D Graphical Representation for Characteristic Sequences of DNA and its Application

  • Li, Chun;Hu, Ji
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.292-296
    • /
    • 2006
  • DNA sequencing has resulted in an abundance of data on DNA sequences for various species. Hence, the characterization and comparison of sequences become more important but still difficult tasks. In this paper, we first give a 2-D ladderlike graphical representation for the characteristic sequences of a DNA sequence, and then construct a 3-component vector, in which the normalized ALE-indices extracted from such three 2-D graphs via D/D matrices are individual components, to characterize the DNA sequence. The examination of similarities/dissimilarities among sequences of the $\beta$-globin genes of different species illustrates the utility of the approach.