• Title/Summary/Keyword: DNA binding proteins

Search Result 315, Processing Time 0.033 seconds

Homeodomain-leucine Zipper Proteins Interact with a Plant Homologue of the Transcriptional Co-activator Multiprotein Bridging Factor 1

  • Zanetti, Maria Eugenia;Chan, Raquel L.;Godoy, Andrea V.;Gonzalez, Daniel H.;Casalongue, Claudia A.
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.320-334
    • /
    • 2004
  • StMBF1 (Solanum tuberosum multiprotein bridging factor 1) is a plant member of the MBF1 family of transcriptional co-activators. In an attempt to understand the role of StMBF1, we analyzed its interaction with plant transcription factors of the homeodomain-leucine zipper (Hd-Zip) family, a group of proteins with a typical leucine zipper motif adjacent to a homeodomain. StMBF1 is able to interact in vitro with the Hd-Zip protein Hahb-4 both in the presence and absence of DNA. Upon binding, StMBF1 increases the DNA binding affinity of Hahb-4, and of another plant homeodomain containing protein from the GL2/Hd-Zip IV family, HAHR-1. The biological role of interactions is discussed in this paper.

Human Ribosomal Protein L18a Interacts with hnRNP E1

  • Han, Sun-Young;Choi, Mie-Young
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.143-148
    • /
    • 2008
  • Heterogeneous nuclear ribonucleoprotein E1(hnRNP E1) is one of the primary pre-mRNA binding proteins in human cells. It consists of 356 amino acid residues and harbors three hnRNP K homology(KH) domains that mediate RNA-binding. The hnRNP E1 protein was shown to play important roles in mRNA stabilization and translational control. In order to enhance our understanding of the cellular functions of hnRNP E1, we searched for interacting proteins through a yeast two-hybrid screening while using HeLa cDNA library as target. One of the cDNA clones was found to be human ribosomal protein L18a cDNA(GenBank accession number BC071920). We demonstrated in this study that human ribosomal protein L18a, a constituent of ribosomal protein large subunit, interacts specifically with hnRNP E1 in the yeast two-hybrid system. Such an interaction was observed for the first time in this study, and was also verified by biochemical assay.

Covalent Interactions of Toluenediisocyanate with DNA and Proteins

  • Jeong, Yo-Chan;Park, Misun;Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • The covalent interactions of toluenediisocyanate (TDI) with macromolecules were investigated both in vitro and in vivo. In vitro incubations of 2,4- and 2,6-TDI with DNA or proteins resulted in dose-dependent formation of TDI-protein and TDI-DNA adducts. TDI-treated DNA was highly resistant to enzymatic digestion and thermal hydrolysis, but was readily hydrolyzed under acidic conditions by releasing its corresponding toluenediamine (TDA), suggesting that TDI caused the crosslinking of DNA. Reaction of TDI with albumin and globin resulted in the formation of several adducts, and some adducts were formed in blood of TDI-treated rats in a dose-dependent fashion. Administration of TDI to rats resulted also in a dose-dependent binding of TDI to hepatic tissue. Levels of TDI-albumin adducts were 10 times higher than those of TDI-globin adducts; the biological half lives of TDI-albumin and TDI-globin adducts were 1.2 and 12.5 days, respectively. Globin adducts were detected up to 28 days after the treatment. Hepatic TDI protein adducts were persistent for a substantial period whereas the levels of hepatic TDI-DNA adduct were decreased rapidly. These results indicate that the isocyanato group of TDI is not readily hydrolyzed under physiological conditions, is transported to other organs, and is bound to DNA and/or proteins without further metabolic activation. As the adducted products degrade in the body, TDA is released and introduced to the liver. TDA may additionally bind to hepatic tissue after metabolic activation. Thus, the toxic effect of TDI exposure is considered to persist during the lifetime of the adducted biological macromolecules.

  • PDF

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Detection of the Specific DNA-binding Proteins for the Aphid rRNA (진딧물 rRNA 유전장에 특이적으로 결합하는 단백질 탐색)

  • O-Yu Kwon;Dong-Hee Lee;Tae-Young Kwon
    • Korean journal of applied entomology
    • /
    • v.34 no.2
    • /
    • pp.100-105
    • /
    • 1995
  • A whole body extract (WBE), a crude nuclear fraction, of aphids was prepared and used to identify the proteins which bound specifically to 5'-upstream regions of the transcription initiation site of the aphid ribosomal RNA gene (rDNA). While DNA fragment (-263/-195) was bound by only one specific 53 kDa protein, two DNA fragments, A(-194/23) and B(-393/-264), were commonly bound by three proteins (52 kDa, 50 kDa and 40 kDa). It was also revealed that the formation of he DNA-protein complex requires a cation.

  • PDF

Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA

  • Eom, Ki Seong;Cheong, Jin Sung;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2019-2029
    • /
    • 2016
  • Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues ($Cys_2His_2$) coordinate to the zinc ion for the structural functions to generate a ${\beta}{\beta}{\alpha}$ fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known $Cys_2His_2$-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.

Effect on the Inhibition of DNA-PK in Breast Cancer Cell lines(MDA-465 and MDA-468) with DNA-PKcs Binding Domain Synthetic Peptide of Ku80 (Ku80의 DNA-PKcs 결합부위 합성 Peptide 투여에 의한 유방암세포의 DNA-dependent protein kinase 억제 효과)

  • 김충희;김태숙;문양수;정장용;강정부;김종수;강명곤;박희성
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • DNA double-strand break (DSB) is a serious treat for the cells including mutations, chromosome rearrangements, and even cell death if not repaired or misrepaired. Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) bound to double strand DNA breaks are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the interaction is essential for DNA-dependent protein kinase (DNA-PK) activity. The Ku80 mutants were designed to bind Ku70 but not DNA end binding activity and the peptides were treated in breast cancer cells for co-therapy strategy to see whether the targeted inhibition of DNA-dependent protein kinase (DNA-PK) activity sensitized breast cancer cells to ionizing irradiation or chemotherapy drug to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. We designed domains of Ku80 mutants, 26 residues of amino acids (HN-26) as a control peptide or 38 (HNI-38) residues of amino acids which contain domains of the membrane-translocation hydrophobic signal sequence and the nuclear localization sequence, but HNI-38 has additional twelve residues of peptide inhibitor region. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, resulting in inactivation of DNA-PK complex activity in breast cancer cells (MDA-465 and MDA-468). Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to irradiation or chemotherapy drugs. The growth of breast cancer cells was also inhibited. These results demonstrate the possibility of synthetic peptide to apply breast cancer therapy to induce apoptosis of cancer cells.

Immobilization of Proteins on Magnetic Nanoparticles

  • Wang, Tzu-Hsien;Lee, Wen-Chien
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.263-267
    • /
    • 2003
  • Magnetic nanoparticles prepared from an alkaline solution of divalent and trivalent iron ions could covalently bind protein via the activation of Nethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC). Trypsin and avidin were taken as the model proteins for the formation of protein-nanoparticle conjugates. The immobilized yield of protein increased with molar ratio of EDC/nanoparticie. Higher concentrations of added protein could yield higher immobilized protein densities on the particles. In contrast to EDC, the yields of protein immobilization via the a ctivation of cyanamide were relatively lower. Nanoparticles bound with avidin could attach a single-stranded DNA through the avidin-biotin interaction and hybridize with a DNA probe. The DNA hybridization was confirmed by fluorescence microscopy observations. Immobilized DNA on nanoparticles by this technique may have widespread applicability to the detection of specific nucleic acid sequence and targeting of DNA to particular cells.

Crystal structure of mismatch repair protein MutS and its complex with a substrate DNA

  • Ban, Changill
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.16-16
    • /
    • 2003
  • Mismatches in a DNA duplex are mainly due to DNA duplication errors that are generated by improper function of DNA polymerase. MutS, MutL and MutH are crucial proteins for the initiation of the methyl-directed mismatch repairing in bacteria. MutS has an ATPase activity md recognize the mismatched or unpaired bases on DNA. After binding to a mismatch, MutS recruits MutL to mediate the activation of MutH an endonuclease, which cleaves the 5' site of d(GATC) on the un-methylated strand. Both MutL and MutS also have essential roles in the subsequent removal and re-synthesis of the daughter strand. We have determined the crystal structures of either intact or active fragments of each of these proteins, both alone and complexed with ligands (DNA, ADP and ATP). The biochemical and mutagenesis studies based on the detailed 3-D structures led to new insights into the role of the ATPase activity of MutS in the mismatch recognition and directions for future investigation of mismatch repair.

  • PDF