• Title/Summary/Keyword: DNA Repair

Search Result 572, Processing Time 0.026 seconds

Induction of SOS Genes by a Low Dose of Gamma Radiation, 10 Gy, in Salmonella enterica Serovar Typhimurium

  • Lim, Sangyong;Joe, Minho;Seo, Hoseong;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.109-113
    • /
    • 2013
  • In a previous study, a relatively high dose of gamma radiation (1 kGy) did not fully induce typical SOS genes such as sulA, recA, recN, and din in Salmonella Typhimurium (S. Typhimurium) (Lim et al. 2008, Gene expression profiles following high-dose exposure to gamma radiation in Salmonella enterica serovar Typhimuium. J. Radiat. Ind. 3:111-119). In this study, we examined changes in the transcriptional repertoire of S. Typhimurium after a dose of 10 Gy using DNA microarrays. It was found that more than half (~65%) of the 26 up-regulated genes belong to the SOS regulon: ten genes are typical SOS genes, and seven genes are Salmonella prophage genes, which are known to be activated by LexA cleavage. Among 29 down-regulated genes, the function of five genes with the most decreased expression is associated with carbohydrate transport and energy production. This suggests that upon exposure to gamma radiation cells may cease growing by reducing the metabolic activity, and repair DNA damage using a DNA repair system such as the SOS response system. The difference in expression of the SOS genes between a high (1 kGy) and low (10 Gy) dose of radiation shows the possibility that cells may opt for one of multiple regulatory circuits in response to the specific gamma radiation dose.

Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells

  • Hyunji Choi;Moonkyung Kang;Kee-Ho Lee;Yeon-Soo Kim
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.612-617
    • /
    • 2023
  • Pleiotropic regulator 1 (PLRG1), a highly conserved element in the spliceosome, can form a NineTeen Complex (NTC) with Prp19, SPF27, and CDC5L. This complex plays crucial roles in both pre-mRNA splicing and DNA repair processes. Here, we provide evidence that PLRG1 has a multifaceted impact on cancer cell proliferation. Comparing its expression levels in cancer and normal cells, we observed that PLRG1 was upregulated in various tumor tissues and cell lines. Knockdown of PLRG1 resulted in tumor-specific cell death. Depletion of PLRG1 had notable effects, including mitotic arrest, microtubule instability, endoplasmic reticulum (ER) stress, and accumulation of autophagy, ultimately culminating in apoptosis. Our results also demonstrated that PLRG1 downregulation contributed to DNA damage in cancer cells, which we confirmed through experimental validation as DNA repair impairment. Interestingly, when PLRG1 was decreased in normal cells, it induced G1 arrest as a self-protective mechanism, distinguishing it from effects observed in cancer cells. These results highlight multifaceted impacts of PLRG1 in cancer and underscore its potential as a novel anti-cancer strategy by selectively targeting cancer cells.

Modulatory effects of $\alpha$- and $\gamma$-tocopherols on 4-hydroxyestradiol induced oxidative stresses in MCF-10A breast epithelial cells

  • Lee, Eun-Ju;Oh, Seung-Yeon;Kim, Mi-Kyung;Ahn, Sei-Hyun;Son, Byung-Ho;Sung, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • v.3 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • The elevated level of circulating estradiol increases the risk of breast tumor development. To gain further insight into mechanisms involved in their actions, we investigated the molecular mechanisms of 4-hydroxyestradiol (4-$OHE_2$) to initiate and/or promote abnormal cell growth, and of $\alpha$- or $\gamma$-tocopherol to inhibit this process. MCF-10A, human breast epithelial cells were incubated with $0.1{\mu}M$ 4-$OHE_2$, either with or without $30{\mu}M$ tocopherols for 96 h. 4-$OHE_2$ caused the accumulation of intracellular ROS, while cellular GSH/GSSG ratio and MnSOD protein levels were decreased, indicating that there was an oxidative burden. 4-$OHE_2$ treatment also changed the levels of DNA repair proteins, BRCA1 and PARP-1. $\gamma$-Tocopherol suppressed the 4-$OHE_2$-induced increases in ROS, GSH/GSSG ratio, and MnSOD protein expression, while $\alpha$-tocopherol up-regulated BRCA1 and PARP-1 protein expression. In conclusion, 4-$OHE_2$ increases oxidative stress reducing the level of proteins related to DNA repair. Tocopherols suppressed oxidative stress by scavenging ROS or up-regulating DNA repair elements.

Histone Modifications During DNA Replication

  • Falbo, Karina B.;Shen, Xuetong
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.149-154
    • /
    • 2009
  • Faithful and accurate replication of the DNA molecule is essential for eukaryote organisms. Nonetheless, in the last few years it has become evident that inheritance of the chromatin states associated with different regions of the genome is as important as the faithful inheritance of the DNA sequence itself. Such chromatin states are determined by a multitude of factors that act to modify not only the DNA molecule, but also the histone proteins associated with it. For instance, histones can be posttranslationally modified, and it is well established that these posttranslational marks are involved in several essential nuclear processes such as transcription and DNA repair. However, recent evidence indicates that posttranslational modifications of histones might be relevant during DNA replication. Hence, the aim of this review is to describe the most recent publications related to the role of histone posttranslational modifications during DNA replication.

DNA Topoisomerase I Inhibitory Activity of Stilbenes and Oligostilbenes from Leaf and Stem of Vitis amurensis

  • Kang, Na-Na;Ha, Do Thi;Park, Chang-Sik;Myung, Pyung-Keun;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.223-227
    • /
    • 2010
  • The DNA Topoisomerase I (DNA Topo I) inhibitory effect of ten isolated compounds (1.10) from the leaf and stem of Vitis amurensis were examined. Among them, amurensin G (5) and r-2-viniferin (7) showed high potent inhibitory activity against DNA Topo I. DNA Topo I, an important target for anticancer drugs, can cause DNA breaks and play a key role during cell proliferation, transcription and repair. Thus, the results suggest that the selected compounds (5 and 7) from Vitis amurensis have a possibility as DNA Topo I-targeting anticancer agents.

Characterization of Streptococcus pneumoniae recP and rec-8 Genes (폐염균 recP와 rec-8 유전자의 비교)

  • Kim, Seung-Hwan;Kim, Soo-Nam;Rhee, Dong-Kwon
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.582-590
    • /
    • 1992
  • S. pneumoniae recP mutant was compared with rec-8 mutant to identify whether they are the same gene or not by determining sensitivity to DNA damaging agents. recP and rec-8 mutant have almost same sensitivity to UV, ethylmethane sulfonate, and methylmethane sulfonate, suggesting that recP has the same function as the rec-8 gene in DNA repair.

  • PDF

A gene responsible for ozone sensitivity (ozrB) in chromosome of escherichia coli B. MQ 1844 (E. coli B. MQ1844 균주의 오존감수성 유전자의 특성)

  • ;Hamelin C.
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 1987
  • An ozone-sensitive mutant of Escherichia coli strain B, MQ 1844 is described. Its properties, including high sensitivity to ozone and radiation, inducible filamentation, extensive DNA degradation and impaired DNA synthesis following ozonation, are attributable to a mutation in ozrB, a gene which is cotransducible with malB. Based on differences in phenotypic expression as well as on the particular location of this gene on the bacterial chromosome, ozrB appears as distinct from the other ozone-or radiation-sensitivity genes previously described.

  • PDF

Single Nucleotide Polymorphisms of DNA Base-excision Repair Genes (APE1, OGG1 and XRCC1) Associated with Breast Cancer Risk in a Chinese Population

  • Luo, Hao;Li, Zheng;Qing, Yi;Zhang, Shi-Heng;Peng, Yu;Li, Qing;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1133-1140
    • /
    • 2014
  • Altered DNA repair capacity can result in increased susceptibility to cancer. The base excision repair (BER) pathway effectively removes DNA damage caused by ionizing radiation and reactive oxidative species (ROS). In the current study, we analyzed the possible relation of polymorphisms in BER genes, including 8-oxoguanine DNA glycosylase (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), and X-ray repair cross-complementing group 1 protein (XRCC1), with breast cancer risk in Chinese Han women. This case-control study examined 194 patients with breast cancer and 245 cancer-free hospitalized control subjects. Single nucleotide polymorphisms (SNPs) of OGG1 (Ser326Cys), XRCC1 (Arg399Gln), and APE1 (Asp148Glu and -141T/G) were genotyped and analyzed for their association with breast cancer risk using multivariate logistic regression models. We found that XRCC1 Arg399Gln was significantly associated with an increased risk of breast cancer. Similarly, the XRCC1 Gln allele was significantly associated with an elevated risk in postmenopausal women and women with a high BMI (${\geq}24kg/m^2$). The OGG1 Cys allele provided a significant protective effect against developing cancer in women with a low BMI (< $24kg/m^2$). When analyzing the combined effects of these alleles on the risk of breast cancer, we found that individuals with ${\geq}2$ adverse genotypes (XRCC1 399Gln, APE1 148Asp, and OGG1 326Ser) were at a 2.18-fold increased risk of breast cancer (P = 0.027). In conclusion, our data indicate that Chinese women with the 399Gln allele of XRCC1 have an increased risk of breast cancer, and the combined effects of polymorphisms of BER genes may contribute to tumorigenesis.

Association of DNA Base-excision Repair XRCC1, OGG1 and APE1 Gene Polymorphisms with Nasopharyngeal Carcinoma Susceptibility in a Chinese Population

  • Li, Qing;Wang, Jian-Min;Peng, Yu;Zhang, Shi-Heng;Ren, Tao;Luo, Hao;Cheng, Yi;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5145-5151
    • /
    • 2013
  • Background: Numerous carcinogens and reactive oxygen species (ROS) may cause DNA damage including oxidative base lesions that lead to risk of nasopharyngeal carcinoma. Genetic susceptibility has been reported to play a key role in the development of this disease. The base excision repair (BER) pathway can effectively remove oxidative lesions, maintaining genomic stability and normal expression, with X-ray repair crosscomplementing1 (XRCC1), 8-oxoguanine glycosylase-1 (OGG1) and apurinic/apyimidinic endonuclease 1 (APE1) playing important roles. Aims: To analyze polymorphisms of DNA BER genes (OOG1, XRCC1 and APE1) and explore their associations, and the combined effects of these variants, with risk of nasopharyngeal carcinoma. Materials and Methods: We detected SNPs of XRCC1 (Arg399Gln), OGG1 (Ser326Cys), APE1 (Asp148Glu and -141T/G) using the polymerase chain reaction (PCR) with peripheral blood samples from 231 patients with NPC and 300 healthy people, furtherly analyzing their relations with the risk of NPC in multivariate logistic regression models. Results: After adjustment for sex and age, individuals with the XRCC1 399Gln/Gln (OR=1.96; 95%CI:1.02-3.78; p=0.04) and Arg/Gln (OR=1.87; 95%CI:1.29-2.71; p=0.001) genotype variants demonstrated a significantly increased risk of nasopharyngeal carcinoma compared with those having the wild-type Arg/Arg genotype. APE1-141G/G was associated with a significantly reduced risk of NPC (OR=0.40;95%CI:0.18-0.89) in the smoking group. The OR calculated for the combination of XRCC1 399Gln and APE1 148Gln, two homozygous variants, was significantly additive for all cases (OR=2.09; 95% CI: 1.27-3.47; p=0.004). Conclusion: This is the first study to focus on the association between DNA base-excision repair genes (XRCC1, OGG1 and APE1) polymorphism and NPC risk. The XRCC1 Arg399Gln variant genotype is associated with an increased risk of NPC. APE1-141G/G may decrease risk of NPC in current smokers. The combined effects of polymorphisms within BER genes of XRCC1 399Gln and APE1 148Gln may contribute to a high risk of nasopharyngeal carcinoma.

Chemopreventive Effect of Quercetin, Vitamin C and Trolox Against the Organic Extract of Airborne Particulate Matter Induced Genotoxicity in A549 Human Lung Carcinoma Cells (대기부유분진추출물로 야기된 DNA 손상에 대한 Quercetin, Vitamin C 및 Trolox 의 보호효과)

  • Kim, Nam-Yee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.239-245
    • /
    • 2007
  • In order to evaluate the genotoxicity of airborne particulate matter extracted with dichloromethane (APE), the rat microsome mediated (S-9) or DNA repair enzyme treated Comet assays were performed using the single cell gel electrophoresis in A549 human lung carcinoma cells. It was found that the cells interacting with APE showed more DNA single-strand breaks relative to untreated cells. The genotoxicity of APE was increased with the treatment of S-9 mixture. Microsome mediated DNA damage was inhibited by CYP1Al inhibitor, quercetin. The APE also showed oxidative DNA damage evaluated by endonuclease III treatment. Oxidative DNA damage of APE was inhibited by antioxidants such as vita- min C and Trolox. We also found that the vegetables or fruits extract may reduce APE-induced genotoxicity by their anti- oxidant activity and CYP1A1 inhibition.