• Title, Summary, Keyword: DNA Damage

Search Result 1,311, Processing Time 0.047 seconds

Comparison of the Protective Effect of Antioxidant Vitamins and Fruits or Vegetable Juices on DNA Damage in Human Lymphocyte Cells Using the Comet Assay (Comet Assay를 이용한 항산화 비타민과 과일.야채즙의 인체 임파구 세포 DNA 손상 감소 효과 비교)

  • 전은재;박유경;김정신;강명희
    • Journal of Nutrition and Health
    • /
    • v.37 no.6
    • /
    • pp.440-447
    • /
    • 2004
  • In this study the in vitro protective effects of several antioxidant vitamins (vitamin C, $\alpha$-tocopherol, $\beta$-carotene), fruits and vegetables (strawberry, tangerine, orange and 100% orange juice, carrot juice), on the levels of isolated human lymphocyte DNA damage was measured using Comet assay. Comet assay has been used widely to assess the level of the DNA damage in the individual cells. Lymphocytes were pre-treated for 30 minutes with antioxidant vitamins (10, 50, 100, 500 $\mu$M) or fruits$.$vegetables (10, 100, 500, 1000 $\mu$g/ml), an4 then oxidatively challenged with 100 $\mu$M $H_2O$$_2$ for 5 min at 4$^{\circ}C$. The protective effect of antioxidant vitamins against DNA damage at a concentration of 50 $\mu$M were 50% in vitamin C, 32% in $\alpha$-tocopherol, whereas, fJ-carotene showed a 55% protection at a dose as low as 10 $\mu$M. The inhibitory effects of DNA damage by strawberry, tangerine, orange, orange juices, carrot juices were 50 - 60% with wide ranges of doses. The results of the present study indicate that most the antioxidant vitamins and fruits$.$vegetables juices produced a significant reduction in oxidative DNA damage.

The Inhibitory Effect of Phytochemicals on the Oxidative DNA Damage in Lymphocytes by Chrysotile

  • Ryu, A-Reum;Kim, Jum-Ji;Lee, Mi-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.179-184
    • /
    • 2012
  • We investigated the cytotoxicity and oxidative DNA damage by chrysotile, one of the asbestos, in this investigation. Chrysotile enhanced malondialdehyde (MDA) levels and intracellular reactive oxygen speices generation in human airway epithelial cells. Furthermore, asbestos-induced oxidative DNA damage in lymphocytes was evaluated by single cell gel electrophoresis and quantified as DNA tail moment. Notably, phytochemicals such as curcumin, berberine, and sulforaphane presented inhibitory effect on the asbestos-induced oxidative DNA damage in lymphocytes.

Hsp90 Inhibitor Geldanamycin Enhances the Antitumor Efficacy of Enediyne Lidamycin in Association with Reduced DNA Damage Repair

  • Han, Fei-Fei;Li, Liang;Shang, Bo-Yang;Shao, Rong-Guang;Zhen, Yong-Su
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7043-7048
    • /
    • 2014
  • Inhibition of heat shock protein 90 (Hsp90) leads to inappropriate processing of proteins involved in DNA damage repair pathways after DNA damage and may enhance tumor cell radio- and chemotherapy sensitivity. To investigate the potentiation of antitumor efficacy of lidamycin (LDM), an enediyne agent by the Hsp90 inhibitorgeldanamycin (GDM), and possible mechanisms, we have determined effects on ovarian cancer SKOV-3, hepatoma Bel-7402 and HepG2 cells by MTT assay, apoptosis assay, and cell cycle analysis. DNA damage was investigated with H2AX C-terminal phosphorylation (${\gamma}H2AX$) assays. We found that GDM synergistically sensitized SKOV-3 and Bel-7402 cells to the enediyne LDM, and this was accompanied by increased apoptosis. GDM pretreatment resulted in a greater LDM-induced DNA damage and reduced DNA repair as compared with LDM alone. However, in HepG2 cells GDM did not show significant sensitizing effects both in MTT assay and in DNA damage repair. Abrogation of LDM-induced $G_2/M$ arrest by GDM was found in SKOV-3 but not in HepG2 cells. Furthermore, the expression of ATM, related to DNA damage repair responses, was also decreased by GDM in SKOV-3 and Bel-7402 cells but not in HepG2 cells. These results demonstrate that Hsp90 inhibitors may potentiate the antitumor efficacy of LDM, possibly by reducing the repair of LDM-induced DNA damage.

DNA Damage Protection and Anti-inflammatory Activity of Different Solvent Fractions from Aruncus dioicus var. kamtschaticus

  • Zhang, Qin;Kim, Hye-Young
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.714-719
    • /
    • 2014
  • This study investigated DNA damage protection and anti-inflammatory activity of different solvent fractions from Aruncus dioicus var. kamtschaticus (A. dioicus) aerial parts water extract. As for DNA damage protection, distilled water ($H_2O$) fraction displayed the most powerful protection for DNA damage at a concentration of 1 mg/ml. As for anti-inflammatory activity, dichloromethane ($CH_2Cl_2$) fraction exhibited the highest NO inhibition activity, ranging from 61% to 19% ($10-40{\mu}g/ml$). Furthermore, the levels of pro-inflammatory cytokines mRNA expressions and intracellular reactive oxygen species (ROS) were employed to verify the anti-inflammatory activity of the $CH_2Cl_2$ fraction on further researches. It could be concluded that A. dioicus had a significantly effect of DNA damage protection and anti-inflammatory activity which also as an essential edible vegetable and medicinal species.

Gender-Specific Changes of Plasma MDA, SOD, and Lymphocyte DNA Damage during High Intensity Exercise (고강도 운동 시 성별에 따른 혈장 MDA, SOD 및 임파구 DNA 손상 변화)

  • Cho, Su-Youn;Chung, Young-Soo;Kwak, Yi-Sub;Roh, Hee-Tae
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.838-844
    • /
    • 2011
  • The purpose of this study was to investigate gender-specific changes of plasma MDA, SOD, and lymphocyte DNA damage during high intensity exercise. In this study, 17 healthy male and 18 healthy female college students ran on a treadmill at 85%$VO_{2max}$ until the point of all-out. Blood-collecting was carried out five times (Rest, Ex-Exha, R0.5h, R4h and R24h), and with the collected blood, plasma malondialdehyde (MDA), superoxide dismutase (SOD), and lymphocyte DNA damage were analyzed. Plasma MDA and SOD concentration increased significantly at the Ex-Exha (p<0.05), and there were no significant differences in gender. For the degree of lymphocyte DNA damage, all %DNA in the tail, tail length and tail moment increased significantly at the Ex-Exha (p<0.05), and %DNA in the tail and tail length were significantly higher in the male group than in the female group (p<0.05). These results suggest that acute high intensity exercise not only causes oxidative stress but also brings about lymphocyte DNA damage. In addition, it was found that males showed higher DNA damage than females in terms of oxidative stress subject to high intensity exercise. Nevertheless, further subsequent studies are required in order to better understand the mechanism behind DNA damage varying with gender, in a way that takes into consideration physical fitness, hormonal level, exercise intensity and duration - additional factors which might affect DNA damage.

Effect of Some Natural Products on the DNA Damaging Activity of 4NQO (4-nitroquinoline n-oxide) and Daunorubicin (Daunorubicin과 4NQO의 DNA damaging activity에 대한 천연물질의 영향)

  • 이완희;이행숙;권혁일;박진서;최수영;이길수
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.112-115
    • /
    • 1999
  • The action mechanism of the inhibitory effect of some natural products on the DNA strand break and DNA damage was investigated in vitro and in vivo. In the E. coli chromosomal DNA strand break experiment in vitro, three mushroom water extracts were effective on the DNA strand breaking by daunorubicin. Phellinus linteus water extract inactivated daunorubicin, a DNA strand breaking agent, but did not protect DNA from daunorubicin-induced DNA strand breaking. Agaricus blazei water extract inhibited DNA strand breaking action of daunorubicin not only by daunorubicin inactivation, but also by DNA protection from daunorubicin. An inhibitory effect of Ganoderma lucidum water extract on the DNA strand break was based on the DNA protection rather than daunorubicin inactivation. In vivo mutagen assay system (SOS-chromotest), among three mushroom water extracts Phellinus linteus water extract was the most effective one on the inhibition of DNA damage by 4-NQO. The results suggest that all three mushroom water extracts inhibit daunorubicin-induced DNA damage and in vivo DNA damaging action of 4-NQO by the reaction of mutagen inactivation or DNA protection from the mutagen.

  • PDF

Chronological Switch from Translesion Synthesis to Homology-Dependent Gap Repair In Vivo

  • Fujii, Shingo;Isogawa, Asako;Fuchs, Robert P.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.297-302
    • /
    • 2018
  • Cells are constantly exposed to endogenous and exogenous chemical and physical agents that damage their genome by forming DNA lesions. These lesions interfere with the normal functions of DNA such as transcription and replication, and need to be either repaired or tolerated. DNA lesions are accurately removed via various repair pathways. In contrast, tolerance mechanisms do not remove lesions but only allow replication to proceed despite the presence of unrepaired lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS), which is an error-prone strategy and an accurate strategy based on homologous recombination (homology-dependent gap repair [HDGR]). Thus, the mutation frequency reflects the relative extent to which the two tolerance pathways operate in vivo. In the present paper, we review the present understanding of the mechanisms of TLS and HDGR and propose a novel and comprehensive view of the way both strategies interact and are regulated in vivo.

GENE-SPECIFIC OXIDATIVE DNA DAMAGE IN HELICOBACTER PYLORI INFECTED HUMAN GASTRIC MUCOSA

  • Jinhee Chol;Yoon, Sun-Hee;Kim, Ja-Eun;Rhee, Kwang-Ho;Youn, Hee-Sang;Chung, Myung-Hee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • /
    • pp.84-84
    • /
    • 2002
  • Abstract To study the status of oxidative DNA damage in Helicobacter pylori infection in more details, gene-specific oxidative DNA damage was investigated by examining oxidative DNA damage to individual genes. This was done by determining the loss of PCR product of a targeted gene before and after gastric mucosal DNA was treated with 8-hydroxyguanine glycosylase, which cleaves DNA at the 8-hydroxyguanine residues.(omitted)

  • PDF

Anti-oxidative effects of Phellinus linteus and red ginseng extracts on oxidative stress-induced DNA damage

  • Park, Byung-Jae;Lim, Yeong-Seok;Lee, Hee-Jung;Eum, Won-Sik;Park, Jin-Seu;Han, Kyu-Hyung;Choi, Soo-Young;Lee, Kil-Soo
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.500-505
    • /
    • 2009
  • Anti-oxidative effect of Phellinus linteus (P. linteus) and red ginseng extracts on DNA damage induced by reactive oxygen species (ROS) were investigated in this study. P. linteus (PLE) and red ginseng extracts (RGE) inhibited the breaking of E. coli ColE1 plasmid DNA strands as well as nuclear DNA of rat hepatocytes damaged by oxidative stress. In addition, a reaction mixture of PLE and RGE showed synergistic inhibitory effect against DNA damage. These results suggest that PLE and RGE have a cellular defensive effect against DNA damage induced by ROS.

Protective Effect of Garlic (Allium sativum L.) Extracts Prepared by Different Processing Methods on DNA Damage in Human Leukocytes (마늘의 조리방법에 따른 DNA 손상 보호 효과의 비교)

  • Kim, Jung-Mi;Jeon, Gyeong-Im;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.805-812
    • /
    • 2010
  • DNA damage including base modifications, loss of base and breaks in DNA strands can occur by exposure to irradiation, smoking and several components of food. Unrepaired DNA damage is known to lead to cellular dysfunction, cell death, cancer, and other diseases such as arteriosclerosis and diabetes. The protective effect of garlic on oxidative stress induced DNA damage has been reported recently. In this study, we investigated the protective effect of garlic extracts prepared by different processing methods (raw garlic extracts, RGE; grilled garlic extracts, GGE; pickled garlic extracts, PGE) on leukocytic DNA damage using comet assay. Human leukocytes were incubated with ethanol and methanol extract of garlic at various concentrations (1, 5, 10, 50 ${\mu}g$/mL), followed by oxidative stimuli (200 ${\mu}M$ $H_2O_2$ or 200 ${\mu}M$ 4-hydroxynonenal (HNE)). The methanol and ethanol extracts of RGE, GGE, and PGE showed inhibitory activities of DNA damage induced by $H_2O_2$ or HNE. Especially methanol extract of RGE ($ED_{50}$; 13.3 ${\mu}g$/mL) had a higher antigenotoxic effect on $H_2O_2$ induced DNA damage than those of GGE (23.5 ${\mu}g$/mL) or PGE (24.5 ${\mu}g$/mL). HNE induced DNA damage tended to be effectively inhibited by the lower concentration of all garlic extracts. Therefore, garlic might have protective effects against oxidative DNA damage regardless of processing methods (raw, grilled, pickled) which are the general consumed forms of garlic in Korea.