• Title/Summary/Keyword: DNA 손상

Search Result 546, Processing Time 0.025 seconds

Importance of Oxidative Stress in Ocular Dysfunction (안구의 기능이상에 대한 산화스트레스의 중요성)

  • Lee, Ji Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.103-109
    • /
    • 2008
  • Purpose: This review illustrates an importance of oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation in association with eye disease, especially of cataract, and discusses an important role of lipid peroxide as a mediator of oxidative stress-related ocular dysfunction. Methods: Oxidative stress, resulted from the cellular production of ROS and RNS, is known to cause various forms of cellular damages such as protein oxidation, DNA breaks, apoptosis, and lipid peroxidation. These damages can be developed to human diseases. Accumulating evidence strongly suggests that continuous or constant exposure of eye tissues to oxidative stress is a main cause of cataractogenesis. Therefore, we investigated the action of oxidative stress in ocular dysfunction. Results: The ocular lens is continuously attacked by ROS inevitable generated from the process of cellular metabolism and the chronic exposure to ultraviolet. Excessive generation of ROS, resulting in degradation, oxidation, crosslinking and aggregation of lens proteins, is regarded as an important factor in development of cataract. Conclusions: These oxidative stress and oxidant/antioxidant imbalance produces the excess ROS which can lead to eye dysfunction. Even though known results, it should be noted that there is limited information on the molecular mechanism which can be better defined with the interrelation of oxidative stress and optic abnormalities.

  • PDF

Biological Compounds Extracted from Codium fragile by Enzymatic Hydrolysis and Their Biological Activities (효소적 가수분해를 이용한 청각으로부터 생리활성 물질의 추출 및 가수분해물의 생리활성)

  • Lee, Ka-Hwa;Senevirathne, Mahinda;Ahn, Chang-Bum;Je, Jae-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.953-959
    • /
    • 2010
  • We extracted bioactive materials from Codium fragile by enzymatic hydrolysis using four different proteases (Alcalase, Flavourzyme, Neutrase, and Protamex) and seven different carbohydrases (amyloglucosidase (AMG), Celluclast, Dextrozyme, Maltogenase, Promozyme, Termamyl, and Viscozyme), and evaluated their biological activities such as antioxidant, anti-acetylcholinesterase (AChE), and anti-inflammatory effects. All enzymatic hydrolysates showed good DPPH radical scavenging capacities, in particular, Flavourzyme and Promozyme hydrolysates possessed the highest activity. The two hydrolysates also exhibited strong hydrogen peroxide scavenging activity, $Fe^{2+}$ chelating activity, and reducing power in a dose-dependent manner. Furthermore, the two hydrolysates effectively protected DNA damage induced by hydroxyl radical by measuring the conversion of supercoiled DNA to the open circular DNA. All enzymatic hydrolysates also showed high anti-AChE inhibitory activities in a dose-dependent manner, and did not showed any significant cytotoxicity on RAW264.7 cells (p<0.05). In addition, the enzymatic hydrolysates significantly (p<0.05) inhibited lipopolysaccharide induced-nitric oxide production on RAW264.7 cells. These results suggest that the enzymatic extracts from Codium fragile would be good source as an ingredient of functional foods.

Effects of Oxidative DNA Damage Induced by Polycyclic Aromatic Hydrocarbons and Genetic Polymorphism of the Paraoxonase-1 (PON1) Gene on Lung Cancer (다환성 방향족 탄화수소 노출에 의한 DNA 산화적 손상과 Paraoxonase-1(PON1) 유전자 다형성이 폐암 발생에 미치는 영향)

  • Lee, Chul-Ho;Lee, Kye-Young;Choe, Kang-Hyeon;Hong, Yun-Chul;Kim, Yong-Dae;Kang, Jong-Won;Kim, Heon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.345-350
    • /
    • 2005
  • Objectives : Polycyclic aromatic hydrocarbons (PAHs), which are risk factors for lung cancer, have been reported to induce oxidative DNA damage. The paraoxonase (PON) plays a significant role in the detoxification of a variety of organophosphorous compounds, with paraoxonase-1 (PON1) being one of the endogenous free-radical scavenging systems in the human body. The aim of this case-control study was to investigate the effects of PAH exposure, oxidative stress and the Q192R polymorphism of PON1 genes, and their interactions in the carcinogenesis of lung cancer. Methods : One hundred and seventy seven lung cancer patients and 177 age- and sex-matched controls were enrolled in this study. Each subject was asked to complete a questionnaire concerning their smoking habits and environmental exposure to PAHs. The Q192R genotypes of the PON1 gene was examined, and the concentrations of urinary 1-hydroxypyrene (1-OHP), 2-naphthol and 8-hydroxydeoxyguanosine (8-OH-dG) measured. Results : Cigarette smoking was found to be a significant risk factor for lung cancer. The urinary 8-OH-dG level was higher in the patients, whereas the urinary 1-OHP and 2-naphthol levels were higher in the controls. There was a significant correlation between the urinary levels of 8-OHdG and 1-OHP in both the cases and controls. The PON1 polymorphism was associated with an increased risk of lung cancer. Individuals carrying the Q/Q genotype of the PON1 gene were found to be at higher risk of developing lung cancer. There was a significant correlation between the urinary levels of 8-OH-dG and 1-OHP in those with the PON1 Q/Q genotype. Conclusions : These results lead to the conclusion that PAHs would induce oxidative DNA damage, especially in individuals with the PON1 Q/Q genotype. Therefore, people with the PON1 Q/Q genotype would be more susceptible to lung cancer than those with the R/R or Q/R genotypes of the PON1 gene.

젖산균의 Plasmid DNA 분리방법 및 Electroporation에 의한 젖산균의 형질전환에 관한 연구

  • Kim, Seon-Gi
    • 한국유가공학회:학술대회논문집
    • /
    • 1997.05a
    • /
    • pp.41-61
    • /
    • 1997
  • 젖산균의 유전자 연구를 촉진하기 위해 간단하고 신속한 plasmid DNA의 분리방법과 electro-poration을 이용하여 vector plasmid의 간단하고 신속한 전이방법을 얻기 위해 젖산균의 형질전환에 영향하는 요인에 대하여 연구하였으며 연구결과는 다음과 같다. 1. O'Sullivan과 Klaenhammer의 방법을 개선하여 젖산균 plasmid DNA의 분리에 좋은 결과를 얻을 수 있는 신속하고 쉬운 방법을 고안하였으며, genomic DNA 분리에 이용되는 guanidium thio-cyanate 처리방법을 plasmid의 분리에 적용할 수 있었다. 2. L. casei, L. acidophilus. L. delbruekii var. bulgaricus. L. brevis와 L. plantarum 균주에서 plasmid를 확인하였으며, 돼지 분에서 분리된 L. lactis ssp. lactis. L. fermentum과 L. plantarum에서도 plasmid를 분리 확인하였다. 3. Lactococci의 plasmid분리는 lactobacilli와는 달리 mutanolysin의 처리없이도 잘 되었으며, L. lactis ssp. lactis와 Ent. faecalis에서 plasmid를 확인하였다. 4. E. coli plasimd 분리에 이용되는 MPS membrane filter 방법으로 젖산균 plasmid pLZ12의 분리가 가능하였으나, 세포파편이 filter를 막아 사용에 어려움이 있는 것으로 확인되었다. 5. Plasmid 분리없이 electroporation을 이용한 세포 대 세포 전이법으로 간편하고 빠르게 E. coli DH5${\alpha}$에 E. coli Jm109의 plasmid pBX19, pBR322를 전이시켰다. 6. L. lactis ssp. lactis 균주에 lysozyme 처리시 30${\sim}$80%의 생존율을 보였으며, 대부분의 L. acidophilus 균주의 경우 약 70%의 생존율을 보였다. L. casei 102S의 경우는 45분간 처리 시에도 100%의 생존율을 보였다. 8. L. lactis ssp. lactis 균주에 pLZ12를 6.0kV에서 전이시킨 결과 12.5kV에서보다 형질전환 효율이 훨씬 높았으며 lysozyme 처리에 의해 형질전환 효율이 증가되었다. 9. L. acidophilus 균주에 pLZ12를 전이시 6.0kV에서는 전이가 모두 이루어졌으나, 12.5kV에서는 L. acidophilus WIESBY와 NCFM에서 전이가 이루어지지 않았으며, lysozyme 처리 후 pLZ12를 전이시켰을 때 12kV보다 6.0kV에서 형질전환 효율이 증가되었다. 10. Gene Pulser와 Progenitor II를 사용하여 pLZ12를 L. lactis ssp. lactis 균주에 전이하였을 때 Gene Pulser에 비해 Progenitor II의 형질전환 효율이 현저히 떨어졌다. L. acidophilus HY7008과 HY7001은 두 기기 모두 형질전환이 이루어졌으나, L. acidophilus WEISBY와 NCFM은 Progeni-tor II에서 전이가 일어나지 않았으며, Gene Pulser에서 전이균주를 얻어 두 electroporator간에 형질전환 효율의 차이를 보였다. 11. L. casei 102S에 pLZ12를 electroporation시 낮은 전압에서 형질전환 효율이 비교적 좋았으며, 배양 시기를 달리하여 전이시켰을 때 대수생장 말기의 세포가 형질전환 효율이 좋았다. 12. L. casei 102S세포를 각각 10% glycerol, EB, 2차 증류수 등에 녹여 electroporation을 실시하였을 때 각각 $3.8{\times}10^3$, $5.0{\times}10^2$,1.5${\times}10^2$cfu의 형질전환 효율을 보였으며, 1.0mM HEPES, TE buffer를 사용하였을 때에는 전이가 이루어지지 않았다. 13. Plasmid pLZ12의 농도를 달리하여 electroporation을 하였을 때 형질전환 효율이 농도에 비례하여 증가하였다. 14. L. casei 102S에 대수생장 말기의 세포를 채취하여 10% glycerol, 200 Ohms, 25 ${\mu}$FD, 10kV/cm로 plasmid pLZ12를 electroporation할 때 최대 형질전환 효율인 3.8${\times}$10$^{3}$cfu를 얻었으며, lysozyme 처리가 다른 젖산균과는 달리 형질전환 효율을 증가시키지 못하였다. 15. L. casei 102S 세포를 10% glycerol과 EB에 녹여 -20$^{\circ}C$에서 냉동시킨 다음 1일과 7일 후의 세포를 electroporation한 결과 냉동시 세포에 손상을 주는 것으로 인식되었다.

  • PDF

Apoptotic Pathway Induced by Dominant Negative ATM Gene in CT-26 Colon Cancer Cells (CT-26 대장암 세포에서 Dominant Negative ATM 유전자에 의하여 유도되는 세포자멸사의 경로)

  • Lee, Jung Chang;Yi, Ho Keun;Kim, Sun Young;Lee, Dae Yeol;Hwang, Pyoung Han;Park, Jin Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.679-686
    • /
    • 2003
  • Purpose : Ataxia telangiectasia mutated(ATM) is involved in DNA damage responses at different cell cycle checkpoints, and signalling pathways associated with regulation of apoptosis in response to ionizing radiation(IR). However, the signaling pathway that underlies IR-induced apoptosis in ATM cells has remained unknown. The purpose of this study was, therefore, to investigate the apoptotic pathway that underlies IR-induced apoptosis in a CT-26 cells expressing dominant negative ATM (DN-ATM). Methods : We generated a replication-deficient recombinant adenovirus encoding the DN-ATM(Ad/DN-ATM) or control adenovirus encoding no transgene(Ad/GFP) and infected adenovirus to CT-26 cells. After infection, we examined apoptosis and apoptotic pathway by [$^3H$]-thymidine assay, DNA fragmentation, and Western immunoblot analysis. Results : DN-ATM gene served as the creation of AT phenotype in a CT-26 cells as revealed by decreased cell proliferations following IR. In addition, IR-induced apoptosis was regulated through the reduced levels of the anti-apoptotic protein Bcl-2, the increased levels of the apoptotic protein Bax, and the activation of caspase-9, caspase-3, and PARP. Conclusion : These results indicate that the pathway of IR-induced apoptosis in CT-26 cells expressing DN-ATM is mediated by mitochondrial signaling pathway involving the activation of caspase 9, caspase 3, and PARP.

Antimutagenic Activities of the Germinated Specialty Rices in E. coli and V79 Cultured Cell Assay Systems (E. coli와 V79 배양세포계에서 발아특수미의 항돌연변이 활성)

  • Kang, Mi-Young;Nam, Seok-Hyun
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.222-227
    • /
    • 2005
  • To evaluate the antimutagenic activity of the specialty rices, a giant embryonic rice and a pigmented rice, we measured the inhibitory effect on the chemically induced mutagenesis in E. coli and V79 cultured cell system, as well as on DNA strand scission induced by oxidative damages in vitro. When the inhibitory activity to mitomycin C-induced mutagenesis using SOS chromotest in E. coli cell was measured, the activities decreased in the following order: germinated pigmented rice (40.4%) > germinated giant embryonic rice (37.1%) > pigmented rice (35.5%) > germinated brown rice (15.7%) > giant embryonic rice (14.0%) > brown rice (0.8%). The activities for inhibiting mitomycin C-induced DNA strand scission decreased in the order of pigmented rice > giant embryonic rice > germinated pigmented rice > germinated brown rice > brown rice > germinated giant embryonic rice. We also determined antimutagenic activities of the specialty rices using the suppressing effect on 6-TG resistant colony formation by 4-NQO in V79 cells as a mutagenicity index. The order of antimutagenicity was germinated giant embryonic rice (53.2%) > pigmented rice (40.0%) > brown rice (21.2%) > germinated brown rice (14.4%) > giant embryonic rice (0.23%); in contrast, germinated pigmented rice showed promoting effect on 4-NQO-induced mutagenesis.

Beneficial effect of Orostachys japonicus A. berger herbal acupuncture on oxidant-induced cell injury in renal epithelial cell (와송약침액이 Oxidant에 의한 신장세포손상에 미치는 영향)

  • Park, Sang-Won;Kim, Cheol-Hong;Youn, Hyoun-Min;Jang, Kyung-Jeon;Ahn, Chang-Beohm;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.24 no.1
    • /
    • pp.171-187
    • /
    • 2007
  • Objectives : This study was performed to determine if Orostachys japonicus A. Berger herbal acupuncture (OjB) provides the protective effect against the loss of cell viability and DNA damage induced by oxidant in renal proximal tubular cells. Methods : The cell viability was evaluated by a MTT reduction assay and DNA damage was estimated by measuring double stranded DNA breaks in opossum kidney (OK) cells, an established proximal tubular cell line. Lipid peroxidation was determined by measuring malondialdehyde (MDA), a product of lipid peroxidation. Results : H2O2 increased the loss of cell viability in a time-dependent manner, which were prevented by 0.1% OjB. The protective effect of OjB was dose-dependent over concentration range of 0.05-0.5%. H2O2 caused ATP depletion and DNA damage, which were prevented by OjB and the hydrogen peroxide scavenger catalase. The loss of cell viability by H2O2 was not affected by the antioxidant DPPD, but lipid peroxidation by the oxidant was completely inhibited by DPPD. Generation of superoxide and H2O2 in neutrophils activated by phorbol-12,13-dibutyrate was inhibited by OjB in a dose-dependent manner. OjB inhibited generation of H2O2 in OK cells treated with antimycin A and exerted a direct H2O2 scavenging effect. Exposure of OK cells to 1 mM tBHP caused a significant depletion of glutathione which was prevented by OjB. OjB accelerated the recovery in cells cultured for 20 hr in normal medium without oxidant following oxidative stress. Conclusions : These results suggest that OjB exerts the protective effect against oxidant-induced cell injury and its protective effect was resulted from radical scavenging and antioxidant activities.

  • PDF

Inhibitory Effect of Aged Black Platycodi Radix Extract on Expression and Activation of Matrix Metalloproteinases in Oxidative-stressed Melanoma Cells (쥐 흑색종 세포에서 산화적 스트레스에 의한 MMPs의 발현과 활성에 대한 흑도라지 추출물의 억제 효과)

  • Chae, Yong-Byung;Lee, Soo-Jin;Jang, Ho-Jung;Park, Jung-Ae;Kim, Moon-Moo;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.736-744
    • /
    • 2010
  • The root of Playtcodon grandiflorum, called Platycodi radix, has been a favorite edible plant in Asia and contains a large amount of saponins. Melanoma cells (B16F10) were used to investigate the inhibitory effect of aged black Platycodi radix extract (ABPRE) on oxidative stress and matrix metalloproteinases (MMPs). Platycodon radix has been known to have a variety of medicinal effects such as prevention of gastric ulcers, antiallergenic activities, histamine release inhibition, and antioxidant effects. However, the mechanism of its action remains unclear in humans. ABPRE was prepared using ethanol extraction of aged black Platycodi radix. In an antioxidant effect study of ABPRE, it was observed that ABPRE specifically exhibited the scavenging activity of DPPH radical, but did not inhibit the production of malondialdehyde from lipid peroxidation. DNA oxidation was also blocked in the presence of ABPRE. In addition, ABPRE decreased the expression and activation of MMP-2 stimulated by phenazine methosulfate. Furthermore, ABPRE revealed the inhibitory effect on melanin production induced by L-dopa via antioxidant effect and the reduction of tyrosinase expression. Especially, the expression of antioxidant enzymes such as SOD-1 and SOD-2 regulated by Nrf2 was increased in the presence of ABPRE. Therefore, it appears that ABPRE may be a possible chemopreventive agent for the prevention of metastasis related to oxidative stress.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

The Study on the Anti-aging Effects of Mallotus japonicus Bark Extracts (예덕나무 피 추출물의 노화 방지 효과에 관한 연구)

  • Lee Kang Tai;Lee Jeong No;Ahn Gi Woong;Jeong Ji Hean;Jo Byoung Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.445-448
    • /
    • 2004
  • Aging is divided into intrinsic aging and photo-aging. Intrinsic aging is naturally occurred as the time passed and photo-aging is induced by the UV radiation of skin. The main reason of aging is the free radicals and the degeneration of the cellular materials by free radicals. In this paper, we checked the anti-aging effects of Mallotus japonicus bark extracts. It has the ability to scavenge free radicals and the SOD like activity. Also, it reduced the cell damage by hydrogen peroxide treatment. Mallotus japonicus bark extracts showed the excellent activity on inhibiting the UV induced cell damage and DNA damage. In conclusion, Mallotus japonicus bark extracts can be used as active ingredients for anti-aging cosmetics.