• Title/Summary/Keyword: DNA: DNA hybridization

Search Result 871, Processing Time 0.021 seconds

Molecular Identification of the Toxic Alexandrium tamiyavanichii (Dinophyceae) by the Whole-cell FISH Method

  • Kim Choong-Jae;Yoshimatsu Sada-Akfi;Sako Yoshihiko;Kim Chang-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.4
    • /
    • pp.175-183
    • /
    • 2004
  • The dinoflagellate Alexandrium tamiyavanichii Balech, a producer of toxins causing paralytic shellfish poisoning (PSP), has recently been considered as one of main organisms responsible for toxication of shellfish in Japan. In this study, A. tamiyavanichii was subjected to a molecular phylogenetic analysis inferred from 28S rDNA D1-D2 sequences and a species-specific LSU rRNA-targeted oligonucleotide DNA probe was designed to identify A. tamiyavanichii using the whole cell-FISH (fluorescence in situ hybridization). The sequences of the 28S rDNA D1-D2 region of A. tamiyavanichii showed no difference from A. cohorticular AF1746l4 (present name A. tamiyavanichii) and formed a distinct clade from the 'tamarensis species complex'. The probe, TAMID2, reacted specifically with A. tamiyavanichii cultured cells, without any cross-reaction with other species belonging to the same genus, including A. tamarense, A. catenella, A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax. In a test of cross-reactivity with a field sample, TAMID2 reacted consistently with only A. tamiyavanichii, indicating that the present protocol involving the TAMID2 probe might be useful for detecting toxic A. tamiyavanichii in a simple and rapid manner.

PCR-based markers developed by comparison of complete chloroplast genome sequences discriminate Solanum chacoense from other Solanum species

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.79-87
    • /
    • 2019
  • One of wild diploid Solanum species, Solanum chacoense, is one of the excellent resources for potato breeding because it is resistant to several important pathogens, but the species is not sexually compatible with potato (S. tuberosum) causing the limitation of sexual hybridization between S. tuberosum and S. chacoense. Therefore, diverse traits regarding resistance from the species can be introgressed into potato via somatic hybridization. After cell fusion, the identification of fusion products is crucial with molecular markers. In this study, S. chacoense specific markers were developed by comparing the chloroplast genome (cpDNA) sequence of S. chacoense obtained by NGS (next-generation sequencing) technology with those of five other Solanum species. A full length of the cpDNA sequence is 155,532 bp and its structure is similar to other Solanum species. Phylogenetic analysis resulted that S. chacoense is most closely located with S. commersonii. Sequence alignment with cpDNA sequences of six other Solanum species identified two InDels and 37 SNPs specific sequences in S. chacoense. Based on these InDels and SNPs regions, four markers for distingushing S. chacoense from other Solanum species were developed. These results obtained in this research could help breeders select breeding lines and facilitate breeding using S. chacoense in potato breeding.

Transferable R plasmid of Streptococci Ioslation from Diseased Olive Flounder (Paralichthys olivaceus) in Jeju (제주도 양식넙치병어에서 분리된 연쇄상구균의 약제내성 전이성 plasmid)

  • Kim, Jong-Hun;Lee, Chang-Hoon;Kim, Eun-Heui
    • Journal of fish pathology
    • /
    • v.19 no.3
    • /
    • pp.267-276
    • /
    • 2006
  • Seventy-five streptococci were isolated from diseased olive flounder, Paralichthys olivaceus in Jeju. Their drug susceptibility and transferable multiple drug resistance were characterized. All isolates were resistant to flumequine (AR) and oxolinic acid (OA) and 26 isolates (34.7%) showed 4~6 multiple resistance of ampicillin (ABPC), AR, doxycycline (DOXY), erythromycin (EM), norfloxacin(NOR), OA and oxytetracycline (OTC) in various combinations. pST9 of a transferable R plasmid was detected from a multiple drug resistance strain, Streptococcus sp., ST9 originated from diseased flounder in Jeju, previously. We performed DNA hybridization to know the distribution of plasmid with the same DNA structure as pST9 in streptococci. Thirteen out of 60 isolates analyzed were positive in colony DNA hybridization and the part of bacteria isolated from raw meal was also hybridized with pST9. It suggested that raw meal is one of the origin of the resistance plasmid and R plasmid with DNA structure differing from pST9 is also involving in multiple drug resistance of the streptococci. In conjugation experiment, we found transferable R plasmid carrying OTC, DOXY and/or EM resistance determinant in the 13 resistance strains. all of the streptococci carrying the transferable R plasmid were similar in RAPD patterns. However, pST -type R plasmid was rare in S. iniae most frequently appearing in flounder farm.

Distribution of Telomeric DNA in Korean Native Chicken Chromosomes (한국 재래닭 염색체의 텔로미어 분포 양상)

  • Sohn, Sea-Hwan;Cho, Eun-Jeong
    • Korean Journal of Poultry Science
    • /
    • v.37 no.3
    • /
    • pp.247-253
    • /
    • 2010
  • Telomeres are nucleoprotein structures at the ends of chromosomes consisting of DNA sequences arranged in tandemly repeated units $(TTAGGG)_n$. However, this hexamers can also occur at non-telomeric sites in some avians and vertbrate. This study was carried out to present the distribution of telomeric DNA sequences in Korean Native Chicken chromosomes. The fluorescence in situ hybridization technique using a telomeric DNA probe was performed to the metaphase spreads of chicken early embryonic cells. Telomeric DNA signals were detected at the ends of chromosomes including macrochromosomes and microchromosomes. In chicken, surprisingly, chromosome 1 showed very distinct interstitial telomeric DNA hybridization patterns which located two interstitial sites in the p-arm at 1p11 and 1p23, and one in the q-arm at 1q32. In chromosome number 2 and 3 also displayed interstitial telomeric signals (ITS) in the long arms at 2q24 and 3q32, respectively. The pattern of telomeric DNA distribution in Korean Native Chicken chromosomes was in agreement with a previously reported in Gallus domesticus. The relative amount of telomeric DNA sequences in each macrochromosomes ranged from 4.6% to 16.3%. Distribution of telomeric DNAs at the end of p-arm was much more than that of q-arm in almost chicken chromosomes. The distribution of ITS in chicken chromsomes implicate to tandem chromosome fusions that might have occurred during the process of karyotype evolution.

Molecular Cloning and High-Level Expression of Human Cytoplasmic Superoxide Dismutase Gene in Escherichia coli (사람의 세포질 Superoxide Dismutase 유전자의 클로닝과 대장균내에서의 대량발현에 관한 연구)

  • 이우길;김영호;양중익;노현모
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.91-97
    • /
    • 1990
  • Complementary DNA (cDNA) coding for human cytoplasmic superoxide dismutase (SOD1) (superoxide: superoxide oxidoreductase E.C.1.15.1.1) was isolated from human liver cDNA library of $\lambda$gt11 by in situ plaque hybridization. The insery cDNA gas the 5' untranslational region (UTR) and 3'UTR of SOD1 gene. Polymerase Chain Reaction (PCR) method was used fro subcloning of SOD1 structural gene. Using synthetic sense strand primer (24mer) containing a start codon and antisense strand primer (24mer), SOD1 structural gene was selectively amplified. Amplified DNA was directly cloned into the HincII site of pUC19 plasmid. Insery cDNA was subcloned into M13 mp19 and sequenced by dideowy chain termination method with Sequenase. The nucleotide sequence of insert cDNA had an open reading frame (ORF) coding for 153 amino acid residues. The structural gene of cytoplasmic SOD was placed under the control of bacteriophage $\lambda P_{L}$ regulatory sequences, generating a highly efficient expression plasmid. The production of human SOD1 in E. coli cells was about 7% of total cellular proteins and recombinant human SOD1 possessed its own enzymatic acitivity.

  • PDF

Physical Mapping of rDNAs Using McFISH in Anemarrhena asphodeloides Bunge (지모에서 McFISH를 이용한 rDNAs의 물리지도 작성)

  • Kim, Soo-Young;Choi, Hae-Woon;Bang, Jae-Wook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.6
    • /
    • pp.515-518
    • /
    • 2004
  • Anemarrhena asphodeloides, a medicinal plant, has chromosome number of 2n=2x=22. To characterize the somatic metaphase chromosomes, physical mapping of 45S and 5S rDNAs using McFISH (multi-color fluorescence in situ hybridization) was applied. Two pairs of 45S rDNA loci were detected on the terminal regions of the short arm of chromosomes 1 and 3. A pair of 5S rDNA signal was observed on the short arm of chromosome 3. 5S rDNA site seemed to be the same locus as one of the 45S rDNA site. McFISH was very useful tool for the localization and identification of rDNAs on the metaphase chromosomes in A. asphodeloides.

Cloning and Expression of Alkaline Phosphatase Gene from Schizosaccharomyces pombe

  • Kang, Sung-Won;Cho, Young-Wook;Park, Eun-Hee;Ahn, Ki-Sup;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.262-267
    • /
    • 2001
  • A cDNA coding alkaline phosphatase (AP) homologue was isolated from a cDNA library of Schizosaccharomyces pombe by colony hybridization. The nucleotide sequence of the cloned cDNA appeared to lack the N-terminal coding region. The genomic DNA encoding alkaline phosphatase homologue was isolated from S. pombe chromosomal DNA using PCR. The amplified DNA fragment was ligated into plasmid pRS315 to generate the recombinant plasmid pSW20. The DNA insert was subcloned as two smaller fragments for nucleotide sequencing. The sequence contains 2,789 by and encodes a protein of 532 amino acids with a molecular mass of 58,666 daltons. The S. pombe cells containing plasmid pSW20 showed much higher AP activity compared with the yeast cells with vector only This indicates that the cloned AP gene apparently encodes AP The predicted amino acid sequence of the S. pombe AP shares homology with those of other known APs.

  • PDF

Molecular Coning of cDNA for Garlic Mosaic Virus Genome (마늘 모자이크 바이러스 게놈에 대한 cDNA의 클로닝)

  • 최연희
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.253-257
    • /
    • 1992
  • Potyvirus group is the largest group among plant virus groups and damages severely plant hosts upon infectiQn. In order to investigate the mechanism by which potyviruses induce disease in plants, a cDNA clone 29-6 which is cOIlsidered to be a cDNA clone for garlic mosaic virus (GMV) was isolated. It did not hybridize to garlic latent virus genome, which is one of two major garlic viruses. Northern blot analysis shows that the genome size of garlic mosaic virus was about 9 kb. Clone 29-6 strongly hybridizes to poly(A) RNA isolated from garlic leaves, suggesting that GMV RNA is polyadenylated as other potyviruses. Nucleotide sequence analysis of cDNA clones overlapping with clone 29-6 showed that garlic plants are infected with various strains of garlic mosaic virus which are closely related to each other. other.

  • PDF

Isolation of 5'-Untranslational Region of Trout Cyp1A1 Gene

  • Roh, Yong-Nam;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.450-455
    • /
    • 1996
  • The genomic DNA was prepared from trout liver which was treated with 3-methycholanthrene, and cloned into lambda EMBL3 at BamHl site. The genomic library was constructed via infections of these recombinant phages into E. coli K802, and screened by the most $5^I$-portion of trout CYP1A1 cDNA. After the screening of $10^9$ clones of the amplified library, 12 positive clones were isolated, and subjected to further screenings. The results of southern blot hybridization of genomic DNA prepared from the positive clone showed the presence of a single gene of CYP1A1, and 3.5 Kb PstI fragment that hybridizes with the most $5^I$-region DNA of CYP1A1 cDNA. The restriction map of PstI fragment was determined by the restriction digestion with various enzymes. The nucleotide sequence of the upstream genomic DNA of CYPIAI was determined by DNA sequencing of exonuclease III unidirectionally deleted PstI fragment DNA using $[^{35}/S]$dATP. This paper presented the upstream genomic DNA of CYP1A1 contained a part of coding region which was about 351 base pairs (from ATG to PstI site at 3563).

  • PDF

Cloning of a DNA Fragment Specific to Pseudomonas tolaasii Causing Bacterial Brown Blotch Disease of Oyster Mushroom (Pleurotus ostreatus) (느타리버섯 세균성갈색무늬병 병원균 Pseudomonas tolaasii의 특이적 DNA 클로닝)

  • 이혁인;차재순
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.177-183
    • /
    • 1998
  • A DNA fragment which is involved in tolassin production was cloned to obtain a molecular marker of Pseudomonas tolaasii, a casual agent of bacterial brown blotch disease of oyster mushroom (Pleurotus ostreatus). Tolaasin is a lipodepsipeptide toxin and known as a primary disease determinant of the P. tolaasii. It is responsible for formation of white line in agar when P. tolaasii were cultured against white line reacting organisms (WLROs). White line negative mutants (WL-) were generated by conjugation between rifampicin resistant strain of P. tolaasii and E. coli carrying suicidal plasmid pSUP2021 : : Tn5. The ability of tolaasin production of the WL- mutants was examined by hemolysis test, pathogenicity test, and high pressure liquid chromatography (HPLC) analysis of culture filtrate. All of the WL- mutants were lost the ability of tolaasin production (Tol-). Genomic library of the Tol- mutant was constructed in pLAFR3 and the cosmid clone containing Tn5 was selected. DNA fragment fro franking region of Tn5 was cloned from the plasmid and used as a probe in Southern blot. DNA-DNA hybridization with the probe to total DNA from group of bacteria ecologically similar to P. tolaasii including WLORs, fluorescent Pseudomonads isolated from oyster mushroom, P. agarici, P. gingeri, and some of other species of Psedomonas showed that some of the tested bacteria do not have any hybridized band and others have bands sowing RFLP. The cloned DNA fragment or its nucleotide sequence will be useful in detection and identification of the P. tolaasii.

  • PDF