• Title/Summary/Keyword: DMR topic modeling

Search Result 7, Processing Time 0.021 seconds

A Study on the Imjin War's Historical Materials with Multi-layer Network Analysis and Topic Modeling (다중 네트워크 분석과 토픽 모델링을 이용한 임진왜란 시기 사료에 관한 연구)

  • Cho, HyunChul;Song, Min
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.167-198
    • /
    • 2022
  • Convergence science research is activated, and digital humanities research is also encouraged in humanities. Therefore, this study attempted to propose a experimental study that applies Text mining and Entitymetrics methods to historical materials. Annals of King Seonjo, revised Annals of King Seonjo, Miscellaneous Record of the War and Writings on Imjin War were used, also network analysis and DMR topic models were used to explore topic changes and common entities in historical sources. Through the results, it was possible to propose the availability of quantitative analysis for text data, presenting a timing change of a specific topic, and an undiscovered relationship between person entities.

The Stream of Uncertainty in Scientific Knowledge using Topic Modeling (토픽 모델링 기반 과학적 지식의 불확실성의 흐름에 관한 연구)

  • Heo, Go Eun
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.1
    • /
    • pp.191-213
    • /
    • 2019
  • The process of obtaining scientific knowledge is conducted through research. Researchers deal with the uncertainty of science and establish certainty of scientific knowledge. In other words, in order to obtain scientific knowledge, uncertainty is an essential step that must be performed. The existing studies were predominantly performed through a hedging study of linguistic approaches and constructed corpus with uncertainty word manually in computational linguistics. They have only been able to identify characteristics of uncertainty in a particular research field based on the simple frequency. Therefore, in this study, we examine pattern of scientific knowledge based on uncertainty word according to the passage of time in biomedical literature where biomedical claims in sentences play an important role. For this purpose, biomedical propositions are analyzed based on semantic predications provided by UMLS and DMR topic modeling which is useful method to identify patterns in disciplines is applied to understand the trend of entity based topic with uncertainty. As time goes by, the development of research has been confirmed that uncertainty in scientific knowledge is moving toward a decreasing pattern.

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.

A Comparison of Author Name Disambiguation Performance through Topic Modeling (토픽모델링을 통한 저자명 식별 성능 비교)

  • Kim, Ha Jin;Jung, Hyo-jung;Song, Min
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2014.08a
    • /
    • pp.149-152
    • /
    • 2014
  • 본 연구에서는 저자명 모호성 해소를 위해 토픽모델링 기법을 사용하여 저자명을 식별 하였다. 기존의 토픽모델링은 용어 자질만을 고려하였지만 본 연구에서는 제 3의 메타데이터 자질을 활용하여 ACT(Author-Conference Topic Model) 모델과 DMR(Dirichlet-multinomial Regression) 토픽모델링을 대상으로 저자명 식별 성능을 평가, 비교하였다. 또한 수작업으로 저자 식별 작업을 한 데이터셋을 기반으로 저자 당 논문 수와 토픽 수에 차이를 두고 연구를 진행하였다. 그 결과 저자명 식별에 있어 ACT 모델보다 DMR 토픽모델링의 성능이 더 우수한 것을 알 수 있었다.

  • PDF

Relation Between News Topics and Variations in Pharmaceutical Indices During COVID-19 Using a Generalized Dirichlet-Multinomial Regression (g-DMR) Model

  • Kim, Jang Hyun;Park, Min Hyung;Kim, Yerin;Nan, Dongyan;Travieso, Fernando
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1630-1648
    • /
    • 2021
  • Owing to the unprecedented COVID-19 pandemic, the pharmaceutical industry has attracted considerable attention, spurred by the widespread expectation of vaccine development. In this study, we collect relevant topics from news articles related to COVID-19 and explore their links with two South Korean pharmaceutical indices, the Drug and Medicine index of the Korea Composite Stock Price Index (KOSPI) and the Korean Securities Dealers Automated Quotations (KOSDAQ) Pharmaceutical index. We use generalized Dirichlet-multinomial regression (g-DMR) to reveal the dynamic topic distributions over metadata of index values. The results of our analysis, obtained using g-DMR, reveal that a greater focus on specific news topics has a significant relationship with fluctuations in the indices. We also provide practical and theoretical implications based on this analysis.

Analysis of Changes in the Concept of Digital Curation through Definitions in Academic Literature (학술 문헌 내 정의문을 통해 살펴본 디지털 큐레이션 개념 변화 분석)

  • Hyunsoo Kim;Hyo-Jung Oh
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.3
    • /
    • pp.269-288
    • /
    • 2024
  • In the era of digital transformation, discussions about digital curation have become increasingly active not only in academia but also in various fields. The primary purpose of this study is to analyze the conceptual changes in digital curation over time, particularly by examining the definition statements related to digital curation as described in academic literature. To achieve this, academic research papers from 2009, when the term "digital curation" was first mentioned, to 2023 were collected, and definition statements that explained relevant concepts were extracted. Basic statistical analyses were conducted. Using DMR topic modeling and word networks, the relationships among keywords and the changes in their importance over time were examined, and a conceptual map of digital curation was made focusing on the main topics. The results revealed that the concept of digital curation is primarily centered around the themes of "data preservation," "traditional curator roles," and "product recommendation curation." Depending on the researchers' intentions for utilizing digital curation, the concept was expanded to include topics such as "content distribution and classification," "information usage," and "curation models." This study is significant in that it analyzed the concept of digital curation through definition statements reflecting the perspectives of researchers. Additionally, the study holds value in explicitly identifying changes in the concepts that researchers emphasize over time through the trends in topic prevalence.

Investigation of Topic Trends in Computer and Information Science by Text Mining Techniques: From the Perspective of Conferences in DBLP (텍스트 마이닝 기법을 이용한 컴퓨터공학 및 정보학 분야 연구동향 조사: DBLP의 학술회의 데이터를 중심으로)

  • Kim, Su Yeon;Song, Sung Jeon;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.135-152
    • /
    • 2015
  • The goal of this paper is to explore the field of Computer and Information Science with the aid of text mining techniques by mining Computer and Information Science related conference data available in DBLP (Digital Bibliography & Library Project). Although studies based on bibliometric analysis are most prevalent in investigating dynamics of a research field, we attempt to understand dynamics of the field by utilizing Latent Dirichlet Allocation (LDA)-based multinomial topic modeling. For this study, we collect 236,170 documents from 353 conferences related to Computer and Information Science in DBLP. We aim to include conferences in the field of Computer and Information Science as broad as possible. We analyze topic modeling results along with datasets collected over the period of 2000 to 2011 including top authors per topic and top conferences per topic. We identify the following four different patterns in topic trends in the field of computer and information science during this period: growing (network related topics), shrinking (AI and data mining related topics), continuing (web, text mining information retrieval and database related topics), and fluctuating pattern (HCI, information system and multimedia system related topics).