• Title/Summary/Keyword: DMOSFETs

Search Result 15, Processing Time 0.034 seconds

Mixed-mode Simulation of Switching Characteristics of SiC DMOSFETs (Mixed-mode 시뮬레이션을 이용한 SiC DMOSFETs의 스위칭 특성 분석)

  • Kang, Min-Seok;Choi, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.737-740
    • /
    • 2009
  • SiC power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics, In this paper, we demonstrated that the switching performance of DMOSFETs are dependent on the with Channel length ($L_{channel}$) and Current Spreading Layer thickness ($T_{CSL}$) by using 2-D Mixed-mode simulations. The 4H-SiC DMOSFETs with a JFET region designed to block 800 V were optimized for minimum loss by adjusting the parameters of the JFET region, CSL, and epilayer. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the gate-source capacitance and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimizatin of superior switching performance.

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs (Mixed-mode simulation을 이용한 4H-SiC DMOSFETs의 채널 길이에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choi, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.131-131
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility ($\sim900cm^2/Vs$). These electronic properties allow high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances, the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. This paper studies different channel dimensons ($L_{CH}$ : $0.5{\mu}m$, $1\;{\mu}m$, $1.5\;{\mu}m$) and their effect on the the device transient characteristics. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship. with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. We observe an increase in the turn-on and turn-off time with increasing the channel length. The switching time in 4H-SiC DMOSFETs have been found to be seriously affected by the various intrinsic parasitic components, such as gate-source capacitance and channel resistance. The intrinsic parasitic components relate to the delay time required for the carrier transit from source to drain. Therefore, improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the gate-source capacitance and channel resistance.

  • PDF

Effect of P-Base Region on the Transient Characteristics of 4H-SiC DMOSFETs (P형 우물 영역에 따른 4H-SiC DMOSFETs의 스위칭 특성 분석)

  • Kang, Min-Seok;Ahn, Jung-Jun;Sung, Bum-Sik;Jung, Ji-Hwan;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.352-352
    • /
    • 2010
  • Silicon Carbide (SiC) power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this paper, we report the effect of the P-base doping concentration ($N_{PBASE}$) on the transient characteristics of 4H-SiC DMOSFETs. By reducing $N_{PBASE}$, switching time also decreases, primarily due to the lowered channel resistance. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimization of superior switching performance.

  • PDF

Optimization of 4H-SiC DMOSFETs by Adjustment of the Dimensions and Level of the p-base Region (P형 우물 영역의 도핑 농도와 면적에 따른 4H-SiC 기반 DMOSFET 소자 구조의 최적화)

  • Ahn, Jung-Joon;Bahng, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Jung, Hong-Bae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.513-516
    • /
    • 2010
  • In this work, a study is presented of the static characteristics of 4H-SiC DMOSFETs obtained by adjustment of the p-base region. The structure of this MOSFET was designed by the use of a device simulator (ATLAS, Silvaco.). The static characteristics of SiC DMOSFETs such as the blocking voltages, threshold voltages, on-resistances, and figures of merit were obtained as a function of variations in p-base doping concentration from $1\;{\times}\;10^{17}\;cm^{-3}$ to $5\;{\times}\;10^{17}\;cm^{-3}$ and doping depth from $0.5\;{\mu}m$ to $1.0\;{\mu}m$. It was found that the doping concentration and the depth of P-base region have a close relation with the blocking and threshold voltages. For that reason, silicon carbide DMOSFET structures with highly intensified blocking voltages with good figures of merit can be achieved by adjustment of the p-base depth and doping concentration.

Effect of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs (4H-SiC DMOSFETs의 계면 전하 밀도에 따른 스위칭 특성 분석)

  • Kang, Min-Seok;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.436-439
    • /
    • 2010
  • SiC power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this work, we report the effect of the interface states ($Q_f$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized by using a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. When the $SiO_2$/SiC interface charge decreases, power losses and switching time also decrease, primarily due to the lowered channel mobilities. High density interface states can result in increased carrier trapping, or more recombination centers or scattering sites. Therefore, the quality of $SiO_2$/SiC interfaces has a important effect on both the static and transient properties of SiC MOSFET devices.

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs

  • Kang, Min-Seok;Bahng, Wook;Kim, Nam-Kyun;Ha, Jae-Geun;Koh, Jung-Hyuk;Koo, Sang-Mo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.236-239
    • /
    • 2012
  • In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs - Impact off the interface changes (Mixde-mode simulation을 이용한 4H-SiC DMOSFETs의 계면상태에서 포획된 전하에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choe, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility (${\sim}900cm^2/Vs$). These electronic properties allow high breakdown voltage, high frequency, and high temperature operation compared to Silicon devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances. the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. In this paper, we report the effect of the interface states ($Q_s$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. The result is a low-loss transient characteristic at low $Q_s$. Based on the simulation results, the DMOSFETs exhibit the turn-on time of 10ns at short channel and 9ns at without the interface charges. By reducing $SiO_2/SiC$ interface charge, power losses and switching time also decreases, primarily due to the lowered channel mobilities. As high density interface states can result in increased carrier trapping, or recombination centers or scattering sites. Therefore, the quality of $SiO_2/SiC$ interfaces is important for both static and transient properties of SiC MOSFET devices.

  • PDF

Analysis of Electrical Characteristics of High-Density Trench Gate Power DMOSFET Utilizing Self-Align and Hydrogen Annealing Techniques (자기 정열과 수소 어닐링 기술을 이용한 고밀도 트랜치 게이트 전력 DMOSFET의 전기적 특성 분석)

  • 박훈수;김종대;김상기;이영기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.853-858
    • /
    • 2003
  • In this study, a new simplified technology for fabricating high density trench gate DMOSFETs using only three mask layers and TEOS/nitride spacer is proposed. Due to the reduced masking steps and self-aligned process, this technique can afford to fabricate DMOSFETs with high cell density up to 100 Mcell/inch$^2$ and cost-effective production. The resulting unit cell pitch was 2.3∼2.4${\mu}$m. The fabricated device exhibited a excellent specific on-resistance characteristic of 0.36m$\Omega$. cm$^2$ with a breakdown voltage of 42V. Moreover, time to breakdown of gate oxide was remarkably increased by the hydrogen annealing after trench etching.

Mixed-mode simulation of switching characteristics of SiC DMOSFETs (Mixed-mode 시뮬레이션을 이용한 SiC DMOSFET의 스위칭 특성 분석)

  • Kang, Min-Seok;Choi, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.37-38
    • /
    • 2009
  • SiC power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. It is known that in SiC power MOSFET, the JFET region width is one of the most important parameters. In this paper, we demonstrated that the switching performance of DMOSFET is dependent on the with width of the JFET region by using 2-D Mixed-mode simulations. The 4H-SiC DMOSFETs with a JFET region designed to block 800 V were optimized for minimum loss by adjusting the parameters of the n JFET region, CSL, and n-drift layer. It has been found that the JFET region reduces specific on-resistance and therefore the switching characteristics depend on the JFET region.

  • PDF

A simulation study on the figure of merit optimization of a 1200V 4H-SiC DMOSFET (1200V급 4H-SiC DMOSFET 성능지수 최적화 설계 시뮬레이션)

  • Choi, Chang-Yong;Kang, Min-Suk;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.63-63
    • /
    • 2009
  • In this work, we demonstrate 800V 4H-SiC power DMOSFETs with several structural alterations to observe static DC characteristics, such as a threshold voltage ($V_{TH}$) and a figure of merit ($V_B^2/R_{SP,ON}$). To optimize the static DC characteristics, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. Design parameters are optimized using 2D numerical simulations and the 4H-SiC DMOSFET structure results in high figure of merit ($V_B^2/R_{SP,ON}$>~$340MW/cm^2$) for a power MOSFET in $V_B{\sim}1200V$ range.

  • PDF