• Title/Summary/Keyword: DME-LPG

Search Result 40, Processing Time 0.023 seconds

Consequence Analysis by Different DME-LPG Mixture Fuels (DME-LPG 혼합연료에 따른 사고결과 피해예측)

  • Park, Dal-Jae;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2011
  • DME(Dimethyl Ehther) is considered as an attractive fuel in terms of clean, environmentally friendly form of energy, multi-source and multi-purpose. As the physical properties of DME are almost similar to LPG, DME can be mixed with LPG and DME-LPG mixture fuels seem to be employed without major remodeling of the existing LPG supply infrastructure. However, little attention has been given to the effect of different DME-LPG mixture fuels on consequence analysis to adjacent facilities, buildings and etc. In this work, the consequence analysis by different DME-LPG mixture fuels has been done. The results were discussed in terms of release rate, jet fire, vapor cloud explosions, BLEVEs and etc. It was found that the consequences estimated from fire and explosion scenarios assumed were almost similar for both LPG and DME 20 %.

Feasibility Test of LPG Vehicles by Using DME-LPG Blends (DME-LPG 혼합연료를 사용한 LPG 차량의 실증평가)

  • Youn, Jumin;Lee, Minho;Park, Cheonkyu;Hwang, Inha;Ha, Jonghan;Kang, Yong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.33-41
    • /
    • 2015
  • Dimethyl ether (DME) can be used as a clean diesel alternative fuel due to the high cetane number and low emission, it can also be applied to automotive fuel as a blended liquefied petroleum gas (LPG) because physical properties are similar to those of LPG. In this study, feasibility test of LPG vehicle using blended DME-LPG fuel was investigated. Three types of fuel supply such as LPLi (Liquid phase LPG injection), LPGi (Liquid phase gas injection) and mixer type were selected to consider the LPG fuel-injection system. The performance characteristics of LPG vehicle were examined by using LPG and blended DME-LPG fuel in order to compare the exhaust emissions (CO, THC, $NO_X$) and fuel economy. The emissions and fuel economy of DME-LPG blend fuel were comparable to those of LPG with increasing driving distance.

Combustion Characteristics Study of an SI Engine Operated with DME Blended LPG Fuel (LPG-DME 혼합연료를 사용하는 전기점화 기관의 연소특성 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2008
  • In this study, a spark ignition engine operated with the DME blended LPG fuel was investigated experimentally. Performance, emissions characteristics including hydrocarbon, CO, NOx, and combustion stability of an SI engine fuelled with DME blended LPG fuel were examined at $1200{\sim}5200\;rpm$. Results showed that stable engine operation was possible for a wide range of engine loads within 20% mass content of DME fuel. Also, engine output power within 10% mass content of DME fuel was comparable to that of pure LPG fuel operation. However, engine output power was decreased and break specific fuel consumption (BSFC) was severely increased with the amount of blended fuel as the energy content of DME was much lower than that of LPG. DME blended LPG fuel is expected to be potential for enlarging DME market.

  • PDF

The Effect of N-butane and Propane on Performance and Emissions of a SI Engine Operated with LPG/DME Blended Fuel (LPG/DME 혼합연료를 사용하는 전기점화 기관에서 LPG 성분이 엔진 성능 및 배기특성에 미치는 영향)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. The effect of n-butane and propane on performance and emissions of a SI engine fuelled by LPG/DME blended fuel were examined. Stable engine operation was achieved for a wide range of engine loads with propane containing LPG/DME blended fuel compare to butane containing LPG/DME blended fuel since octane number of propane was much higher than that of butane. Also, engine output operated with propane containing blended fuel was comparable to pure LPG fuel operation. Engine output power was decreased and break specific fuel consumption (BSFC) was increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power, bsfc, and exhaust emissions, the propane containing LPG/DME blended fuel could be used as an alternative fuel for LPG.

Determination Method of Hydrocarbon Compounds in DME-LPG Blending Fuels by Gas Chromatography with Deans Switching (Deans Switching을 이용한 가스크로마토그래피에서 DME-LPG 혼합연료의 탄화수소 화합물 분석방법)

  • Youn, Ju Min;Park, Cheon Kyu;Yim, Eui Soon;Jung, Choong Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.353-357
    • /
    • 2012
  • The new qualitative and quantitative analytical method for hydrocarbon compounds in DME-LPG blending fuel, mixing dimethyl ether (DME) with liquefied petroleum gas (LPG), by using gas chromatography (GC) was investigated. It is difficult to analyze all components of DME-LPG blending fuel by using single column in GC due to consisting of the non-polar LPG and the polar DME which is oxygen-containing compound. Therefore, it has been introduced the Deans switching system, which are useful for analyzing mixtures of a very different nature and/or target analytes in very complex matrix. This technique is to control the pressure between two columns and to selectively change the path of effluent flows to either one of two columns. As a result, we found that DME and LPG can be completely separated at the different columns and the determination of all hydrocarbon compounds in DME-LPG blending fuel can be achieved to this method qualitatively and quantitatively during the operation of one injection. In addition, this method can be applied to the determination of trace components of by-product, such as methanol, methyl formate and ethyl methyl ether, which will be derived from DME synthesis process.

Performance and Emissions of a SI Engine Operated with LPG-DME Blended Fuel (LPG-DME 혼합연료를 사용하는 전기점화 기관의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.175-182
    • /
    • 2008
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. Performance and emissions characteristics of a LPG engine fuelled by LPG and DME blended fuel were examined. Results showed that stable engine operation was possible for a wide range of engine loads within 20% mass content of DME fuel. Also, engine output power within 10% mass content of DME fuel was comparable to pure LPG fuel operation. Exhaust emissions measurements showed that hydrocarbon and NOx were increased with the blended fuel at low engine speed. Engine output power was decreased and break specific fuel consumption (BSFC) was severely increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power and exhaust emissions, the blended fuel within 20% mass content of DME could be used as an alternative fuel for LPG.

Experiment to test combustion efficiency of DME-LPG mixed fuel (DME-LPG 혼합연료의 연소효율 측정실험)

  • Lee, Hyenchan;Baek, Youngsoon;Choi, Changwoo;Lee, Eunjic
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.161.1-161.1
    • /
    • 2010
  • 대표적인 에너지원인 석유는 매장량 및 매장지역이 한정되어 있으며, 환경오염, 연료공급 등의 문제를 안고 있다. 에너지의 대부분을 수입하고 있는 우리나라는 경제성장 및 소득수준 향상으로 에너지 소비량이 증가하면서, 국제유가 상승은 국가 경제에도 큰 악영향을 미치고 있다. 이러한 상황에서 화석연료인 석유를 대체하기 위하여 최근 차세대 대체에너지에 대한 관심이 높아지면서 청정연료인 디메틸에테르(Dimethyl Ether : DME)의 사용방안에 대한 기술개발이 활발히 진행되고 있다. 정부(지식경제부)에서는 DME 보급을 위한 기본계획에서 3단계의 보급계획에 따라 2013년까지 DME를 상용화하겠다는 목표를 발표한바 있다. 그래서 2007년부터 2009년까지 2년간 정부 주관 하에 한국가스공사 등이 1단계 DME 보급을 위한 실증연구를 수행하였다. 1단계 실증연구를 통해 DME-LPG 혼합연료에 대한 품질 및 안전기준을 마련하였으며, DME를 일반 가정 및 상업용으로 시범보급 할 수 있는 특례고시가 2009년 11월에 제정되었다. 현재 제정된 DME-LPG 시범보급 특례고시에 따라 2009년 12월부터 2011년 11월까지 2년간 2단계 시범보급 연구가 진행되고 있다. 2단계 시범보급연구에서는 한국가스공사외 3개 기관이 함께 참여하여 연구를 수행하고 있다. 시범보급에서는 DME-LPG 혼합연료를 일반 가정 및 상업용으로 직접 소비자에게 시범적으로 보급하는 만큼, DME-LPG 혼합연료가 LPG 연료에 비해서 연소효율이 어느 정도 수준인지를 비교하는 것이 매우 중요한 사항이므로 본 실험에서는 가정 및 상업용으로 사용되는 연소기기를 대상으로 LPG 및 DME-LPG 혼합연료에 대해 연소효율을 측정하는 실험을 수행하였다.

  • PDF

A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System (커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구)

  • Kim, W.I.;Woo, S.C.;Lee, C.S.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.

Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG/DME Blended Fuel (LPG/DME 혼합연료를 사용하는 직접분사식 디젤 엔진의 부분부하 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Cho, Jun-Ho;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.53-60
    • /
    • 2009
  • In this study, LPG-blended DME fuel was experimentally investigated in CI(compression ignition) engine. In particular, performance, emissions characteristics (including hydrocarbon, CO, and NOx emissions), and combustion stability of engine fueled with LPG-blended DME fuel were examined. The extent of LPG fuel in the blended fuel was 0-40 wt%. Results showed that stable engine operation was possible in a wide range of engine loads on DME blended with maximum 30% of LPG by mass in a CI engine. Considering the results of the engine power output and exhaust emissions, blended fuel up to 30% of LPG by mass can be used as an alternative to diesel in a CI engine. LPG blended DME fuel is expected to have potential for enlarging the DME market.

Fuel Stratification Effects of LPG-DME Compression Ignition Engine (LPG-DME 압축착화 엔진의 성층화 영향)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • The exhaust emission characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge, stratified charge and diffusion combustion conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion combustion region according to the injection timing of LPG. The HC emission was reduced with LPG stratification. However, the carbon monoxide and particulate matter emissions were increased. The ignition timing was advanced with LPG stratification. This advance combustion was because of charge temperature and cetane number stratification with LPG.