• 제목/요약/키워드: DME (Di-Methyl Ether)

검색결과 35건 처리시간 0.023초

신재생 에너지로서 DME 기술개발 현황 (Current Status and Technical Development for Di-Methyl Ether as a New and Renewable Energy)

  • 조원준;김승수
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.355-362
    • /
    • 2009
  • 석유를 기반으로 한 연료는 가까운 미래에 고갈될 것이다. 디메틸에테르(Di-methyl Ether, DME)는 청정에너지이며 천연가스,석탄 및 바이오매스 등으로 생산이 가능하다.DME는 분자구조 내에 탄소-탄소 결합이 없는 함산소 연료로 연소시 그을음과 황산화물을 발생하지 않으며, 물리적 특성이 액화석유가스(Liquified Petroleum Gas, LPG)와 매우 유사하여 LPG 유통인프라를 그대로 활용할 수 있다. DME는 세탄값이 55~60 정도로 높아 디젤 자동차용 연료로도 활용이 가능하다.차세대 청정연료로 혹은 차세대 화학공업 원료물질로 전력생산,디젤 연료, 가정용 연료 및 연료전지 등에 사용이 가능하다.본 총설에서는DME의 특성, 표준화, 국내외의 기술개발현황, 대체연료로서의 활용에 대해 살펴보고자 한다.

LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향 (LPG-DME Compression Ignition Engine with Intake Variable Valve Timing)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

천연가스를 이용한 DME 합성 고정층 촉매 반응기 해석 (Analysis of Fixed Bed Reactor for the synthesis of DME from METHANE)

  • 윤인섭;이신범;안성준;조병학;조원일;백영순;박달근
    • 한국가스학회지
    • /
    • 제8권4호
    • /
    • pp.42-49
    • /
    • 2004
  • 최근 디젤연료대체용으로 각광을 받고 있는 DiMethylEther(DME)를 천연가스로부터 얻어지는 합성가스를 이용하여 직접 생산하는 1단계법의 고정층 촉매 반응기를 시뮬레이션하였다. 그 결과 과잉냉각시 반응기의 온도가 떨어져서 전체적인 반응이 둔화되며, 강제 냉각을 하지 않을 경우 급격한 온도상승으로 인해 역시 반응효율이 떨어지게 된다는 것을 알 수 있었다. 또한, 냉각효과 및 반응물의 공간속도 및 반응물의 온도등의 조건에 따른 최적운전조건을 수립할 수 있었다.

  • PDF

DME 체적탄성계수의 측정 및 계산 (Measurement and Calculation of Bulk Modulus for DME)

  • 조승환;이범호;이대엽
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.841-848
    • /
    • 2008
  • DME(Di-methyl Ether) has been expected to be one of the promising alternative fuels for compression ignition engines due to its low emission characteristics for particulate matter. However, its physical properties such as density, bulk modulus and viscosity are not comparable to those of conventional diesel fuel. Especially, problems caused by low lubricity and high compressibility need to be understood more thoroughly, when a DME fuel is used for compression ignition engine, especially with mechanical fuel supply system. In this study, measurement and calculation of DME's bulk modulus were carried out over the range of temperatures from $-3^{\circ}C$ to $53^{\circ}C$, and pressures from 50 bar to 250 bar using an experimental apparatus built in this work. The results show that DME is prone to be compressed more easily compared to diesel fuel. A comparison of bulk modulus with butane and propane were also made in this work.

DME 커먼레일 시스템을 위한 인젝터 분사 유량 개선 (Injection Flow Rate Improvement of Injectors for DME Common-rail Systems)

  • 이기수;신석신;박종호
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.55-60
    • /
    • 2013
  • In this study, injection flow rates and material of the solenoid sealing of the injectors were improved for the development of a di-methyl Ether(DME) common-rail system. To deliver the same amount of energy provided by injection pressure of diesel $P_{inj}$ = 160 MPa, the DME injectors need to have larger diameter of nozzle hole and more No. of hole at low injection pressure of $P_{inj}$ = 40~50 MPa. The simplified nozzle flow model, which takes account of nozzle geometry and injection condition, was employed in order to design the concept of a injector nozzle such as No. of hole, diameter of hole and diameter of needle seat, etc. Injection amount and rate were tested by diesel and DME test stand. As a result, the diameter of nozzle hole were enlarged by 0.25 mm. The diameter of the orifice in the high pressure line was increased by 1.0 mm to maintain hydraulic force in the nozzle. The material of the solenoid sealing was changed to HNBR, which was strong against the corrosive. Experimental results showed that the injection amount of the DME injector drastically increased by 191.9% comparison to that of diesel at $P_{inj}$ = 40 MPa.

DME를 연료로 하는 고압펌프의 성능 및 내열 특성 평가 (Performance and Thermal Endurance Tests of a High Pressure Pump Fueled with DME)

  • 백범기;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.89-95
    • /
    • 2020
  • The main scope of this paper is to see if the conventional pump can be properly used for a specific fuel, Di-methyl Ether (DME) despite of its low lubricity and high reactivity in the experimental conditions. A wobble plate type fuel pump was connected to the common rail to verify that the pump could deliver the fuel at the required pressure and resultantly DME could be used as fuel without modifying the original pump. At each required pressure (30 Mpa, 35 Mpa, 40 Mpa, 45 Mpa, and 50 Mpa), the pump met the pressure required by the common rail. In addition, pump performance experiments tended to follow the usual performance curve while the flow rate decreased as the pressure increased. The maximum flow rate of the pump was 470 kg/h at 30 Mpa and all measurements were taken with keeping DME temperature below 60℃.

LPG-DME 성층혼합 압축착화 엔진 (LPG-DME Stratified Charge Compression Ignition Engine)

  • 배충식;염기태
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.672-679
    • /
    • 2007
  • The combustion characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge and stratified charge conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion flame region according to the injection timing of LPG. The hydrocarbon emission of stratified charge combustion was lower than that of homogeneous charge combustion. However, the carbon monoxide and nitrogen oxide emission of stratified charge combustion were slightly higher than those of the homogeneous charge region. The indicated mean effective pressure was reduced at stratified charge region, while it was almost same level as the homogeneous charge combustion region at diffusion combustion region. The start of combustion timing of the stratified charge combustion and diffusion combustion region were advanced compared to the homogeneous charge combustion. It attributed to the higher cetane number and mixture temperature distribution which locally stratified. However, the knock intensity was varied as the homogeneity of charge was increased.

LPG-DME 압축착화 엔진의 성층화 영향 (Fuel Stratification Effects of LPG-DME Compression Ignition Engine)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.78-85
    • /
    • 2008
  • The exhaust emission characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge, stratified charge and diffusion combustion conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion combustion region according to the injection timing of LPG. The HC emission was reduced with LPG stratification. However, the carbon monoxide and particulate matter emissions were increased. The ignition timing was advanced with LPG stratification. This advance combustion was because of charge temperature and cetane number stratification with LPG.

HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석 (Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines)

  • 임옥택
    • 한국가스학회지
    • /
    • 제13권6호
    • /
    • pp.21-28
    • /
    • 2009
  • 본 연구의 목적은 온도 성층화와 농도 성층화의 효과가 HCCI 연소에서 압력상승률 저감과 배기가스에 어떤 영향을 미치는지 알아보는 것이다. 2단계 열발생이 생기는 디메틸에테르(Di-Methyl Ether, DME) 연료를 사용하였다. 수치계산은 멀티 존 모델과 상세 화학 반응 스킴을 이용하였다. 수치계산 결과, 온도 성층화와 농도 성층화는 연소기간을 길게 하여 압력상승률을 저감시키는 것을 확인하였다. 그러나 농도 성층화의 폭이 너무 커지면 오히려 일산화탄소와 질소산화물이 증가하였으며, 연소 효율은 감소하였다.

  • PDF