• Title/Summary/Keyword: DME(Di-methyl Ether)

Search Result 35, Processing Time 0.031 seconds

An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure (분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구)

  • Jeong, Y.H.;Yang, J.W.;Oh, C.H.;Lim, O.T.
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

GE7EA Gas Turbine Combustion Performance Test of DME and Methane (DME와 메탄의 GE7EA 모사가스터빈 연소성능시험)

  • Lee, Min-Chul;Seo, Seok-Bin;Chung, Jae-Hwa;Joo, Youg-Jin;Ahn, Dal-Hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3270-3275
    • /
    • 2007
  • DME (Dimethyl Ether, $CH_3OCH_3$) has highly attracted attention as an alternative fuel for transportation, power generation and LPG substitute owing to its easy transportation and cleanliness. This study was conducted to verify the combustion performance and to identify potential problems when DME is fuelled to a gas turbine. GE7EA gas turbine of Pyong-Tak power plant was selected as a target to apply the DME. Combustion tests were conducted by comparing DME with methane, which is a major component of natural gas, in terms of combustion instability, $NO_X$ and CO emissions, and the outlet temperature of the combustion chamber. The results of the performance tests show that DME is very clean but has a low combustion efficiency in low load condition. From the results of the fuel nozzle temperature we have ascertained that DME is easy to flash back, and this property should be considered when operating a gas turbine and retrofitting a burner.

  • PDF

A Computational Study about Effects of Operating parameters and EGR compositions on Autoignition Reactivity for DME HCCI Combustion

  • Jamsran, Narankhuu;Lim, Ocktaeck
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.305-307
    • /
    • 2012
  • This study was computationally explored how the fuel autoignition reactivity was affected by operating parameters such as fuel, pressure, intake temperatures, engine speed and EGR compositions for HCCI combustion. This is done for DME and CHEMKIN-PRO was used as a solver. At first, influence of the operating parameters and EGR compositions were showed. And then, in order to clarify the mechanism of them on autoignition reactivity, data-sets of kinetic were analyzed to investigate the elementary reaction path for heat release at transient tempeatures by using contribution matrix.

  • PDF

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

Knocking and Combustion Characteristics at Rich Limit of Gasoline HCCI Engine (가솔린 예혼합 압축 착화 엔진의 농후 한계에서 연소와 노킹 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2006
  • Variable valve timing is one of the attractive ways to control homogeneous charge compression ignition (HCCI) engine. Hot internal residual gas which can be controlled by variable valve timing(VVT) device, makes fuel evaporated easily, and ignition timing advanced. Regular gasoline was used as main fuel and di-methyl ether(DME) was used as ignition promoter in this research. HCCI engine operating range is limited by high combustion peak pressure and engine noise. High combustion pressure can damage the engine during operation. To avoid engine damage, the rich limits have to define using various methods. Peak combustion pressure, rate of cylinder pressure rise was considered to determine rich limit of engine operating range. Knock probability was correlated with the rate of cylinder pressure rise as well as the peak combustion pressure.

SEPARATION AND PURIFICATION PROCESS OF DEMO PLANT FOR 10TON PER DAY DME PRODUCTION (일일 10톤 DME 생산 Demo Plant에서의 분리정제 공정)

  • Ra Young Jin;Cho Wonihl;Shin Dong Geun;Lim Gye Gue
    • 한국가스학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-145
    • /
    • 2005
  • DME (Di-Methyl Ether) is a new clean fuel and an environmental-friendly energy resource, also is recently increasing with an alternative interest because of the industrial use. DME has been shown to have excellent properties as a diesel fuel giving emission level better than ULEV standard. So it has been attracting considerable as an alternative diesel fuel. In this study, we carried out simulation of separation and purification process of demo plant for 101on per day DME production, which cause the effect that is important in productivity, from operation results of pilot plant for 50kg per day DME production. The liquefied stream, which was separated by gas-liquid separator after DME reactor, includes $CO_2$, DME, Methanol and $H_2O$. We established three distillation columns for separation and purification of the stream. $CO_2$ was extracted from the stream by first distillation column, DME was extracted by second column and Methanol was extracted by third column. We investigated and analyzed the effect which the actual operation variables cause in efficiency of process and optimized process, finally we got the DME of purity $100\%$.

  • PDF

Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine (DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구)

  • Lim, Ock-Taeck;Pyo, Young-Duck;Lee, Young-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Basic Economic Analysis for Co-production Process of DME and Electricity using Syngas Obtained by Coal Gasification (석탄 가스화를 통한 전력 생산과 DME 병산 공정에 대한 기초 경제성 분석)

  • Yoo, Young Don;Kim, Su Hyun;Cho, Wonjun;Mo, Yonggi;Song, Taekyong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.796-806
    • /
    • 2014
  • The key for the commercial deployment of IGCC power plants or chemical (methanol, dimethyl ether, etc.) production plants based on coal gasification is their economic advantage over plants producing electricity or chemicals from crude oil or natural gas. The better economy of coal gasification based plants can be obtained by co-production of electricity and chemicals. In this study, we carried out the economic feasibility analysis on the process of co-producing electricity and DME (dimethyl ether) using coal gasification. The plant's capacity was 250 MW electric and DME production of 300,000 ton per year. Assuming that the sales price of DME is 500,000 won/ton, the production cost of electricity is in the range of 33~58% of 150.69 won/kwh which is the average of SMP (system marginal price) in 2013, Korea. At present, the sales price of DME in China is approximately 900,000 won/ton. Therefore, there are more potential for lowering the price of co-produced electricity when comparing that from IGCC only. Since the co-production system can not only use the coal gasifier and the gas purification process as a common facility but also can control production rates of electricity and DME depending on the market demand, the production cost of electricity and DME can be significantly reduced compared to the process of producing electricity or DME separately.

A Study about the Effects of EGR Stratification on Reducing the Pressure RIse Rate of DME HCCI Combustion (EGR 성층화급기에 의한 DME HCCI 연소시의 압력 상승률 저감에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.895-904
    • /
    • 2011
  • Stratified charge has been thought as one of the ways to avoid a sharp pressure rise on HCCI combustion. The purpose of this study is to evaluate the potential of stratified charge for reducing PRR on HCCI combustion. The pre-mixture with thermal, mixing and EGR stratifications is charged in Rapid Compression Machine. After that, the pre-mixture is compressed and in that process, in-cylinder gas pressure and temperature are analyzed. Additionally numerical calculation with multi-zones modeling is run to know the potential of stratified charge for reducing PRR.