• Title/Summary/Keyword: DMD imaging

Search Result 10, Processing Time 0.026 seconds

Magnetic Resonance Imaging as a Biomarker for Duchenne Muscular Dystrophy

  • Lim, Woo-taek
    • Physical Therapy Korea
    • /
    • v.22 no.3
    • /
    • pp.98-105
    • /
    • 2015
  • Muscular dystrophy is a hereditary musculoskeletal disorder caused by a mutation in the dystrophin gene. Duchenne muscular dystrophy (DMD) is one of the most common, and progresses relatively faster than other muscular dystrophies. It is characterized by progressive myofiber degeneration, muscle weakness and ultimately ambulatory loss. Since it is an X-linked recessive inheritance, DMD is mostly expressed in males and rarely expressed or less severe in females. The most effective measurement tool for DMD is magnetic resonance imaging (MRI), which allows non-invasive examination of longitudinal measurement. It can detect progressive decline of skeletal muscle size by measuring a maximal cross-sectional area of skeletal muscle. Additionally, other techniques in MRI, like $T_2$-weighted imaging, assess muscle damage, including inflammation, by detecting changes in $T_2$ relaxation time. Current MRI techniques even allow quantification of metabolic differences between affected and non-affected muscles in DMD. There is no current cure, but physical therapist can improve their quality of life by maintaining muscle strength and function, especially if treatment (and other forms of medical intervention) begins in the early stages of the disease.

In Situ Fluorescence Optical Detection Using a Digital Micromirror Device (DMD) for 3D Cell-based Assays

  • Choi, Jong-Ryul;Kim, Kyujung;Kim, Donghyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • We have developed a fluorescence optical detection system using a digital micromirror device (DMD) for monitoring 3D cell culture matrices in situ. Full 3D imaging with fast scanning speed was implemented by the combined action of a DMD and a motorized stage. Imaging results with fluorescent microbeads measure the minimum axial resolution of the system as $6.3{\mu}m$, while full 1-mm scanning through 3D alginate-based matrix was demonstrated. For cell imaging, improved images were obtained by removing background fluorescence although the scanning distance was reduced because of low intracellular fluorescence efficiency. The system is expected to be useful to study various dynamics and behaviors of 3-dimensionally cultured cells in microfluidic systems.

Image Stitching and Seamless Holographic Photo-Lithography for Large-Area Patterning (대면적 리소그래피를 위한 홀로그램 영상의 연결과 연결 영역에서의 간섭무늬 제거)

  • Lee, Joon-Sub;Park, Woo-Jae;Lee, Ji-Whan;Song, Soek-Ho;Lee, Sung-Jin;Kim, Oui-Serg
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • In this study, we propose an image stitching method for large-area holographic photo lithography. In this method, a hologram medium become a hologram mask for lithography. And the mask has information for stitched images. These images are recorded by signal images which are controlled with DMD (digital micro-mirror device), and serial hologram recording is achieved with a motorized linear stage. Using this method, fringe seams appear on the stitching area. To remove these fringe seams, double exposure holographic lithography is tried. Each stitched image is recorded and reconstructed with a different reference beam. The experiments confirm that fringe seams are removed.

A Study on the Laser Direct Imaging for FPD ( I ) (평판 디스플레이용 Laser Direct Imaging에 관한 연구( I ))

  • Kang, H.S.;Kim, K.R.;Kim, H.W.;Hong, S.K.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.37-41
    • /
    • 2005
  • When screen size of the Flat Panel Display (FPD) becomes larger, the traditional photo-lithography using photomasks and UV lamps might not be possible to make patterns on Photo Resist (PR) material due to limitation of the mask size. Though the maskless photo-lithography using UV lasers and scanners had been developed to implement large screen display, it was very slow to apply the process for mass-production systems. The laser exposure system using 405 nm semi-conductor lasers and Digital Micromirror Devices (DMD) has been developed to overcome above-mentioned problems and make more than 100 inches FPD devices. It makes very fine patterns for full HD display and exposes them very fast. The optical engines which contain DMD, Micro Lens Array (MLA) and projection lenses are designed for 10 to 50 ${\mu}m$ bitmap pattern resolutions. The test patterns for LCD and PDP displays are exposed on PR and Dry Film Resists (DFR) which are coated or laminated on some specific substrates and developed. The fabricated edges of the sample patterns are well-defined and the results are satisfied with tight manufacturing requirements.

  • PDF

A Study on the Analysis of Multi-beam Energy for High Resolution with Maskless Lithography System Using DMD (DMD를 이용한 마스크리스 리소그래피 시스템의 고해상도 구현을 위한 다중 빔 에너지 분석에 관한 연구)

  • Kim, Jong-Su;Shin, Bong-Cheol;Cho, Yong-Kyu;Cho, Myeong-Woo;Lee, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.829-834
    • /
    • 2011
  • Exposure process is the most important technology to fabricate highly integrated circuit. Up to now, mask type lithography process has been generally used. However, it is not efficient for small quantity and/or frequently changing products. Therefore, maskless lithography technology is raised in exposure process. In this study, relations between multi-beam energy and overlay were analyzed. Exposure experiment of generating pattern was performed. It was from presented scan line by multi- beam simulation. As a result, optimal scan line distance was proposed by simulation, and micro pattern accuracy could be improved by exposure experiment using laser direct imaging system.

Long-standing chin-augmenting costochondral graft creating a diagnostic challenge: A case report and literature review

  • Badr, Fatma Fayez;Mintline, Mark;Ruprecht, Axel;Cohen, Donald;Blumberg, Barton R.;Nair, Madhu K.
    • Imaging Science in Dentistry
    • /
    • v.46 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • To our knowledge, the imaging features of costochondral grafts (CCGs) on cone-beam computed tomography (CBCT) have not been documented in the literature. We present the case of a CCG in the facial soft tissue to the anterior mandible, with changes mimicking a cartilaginous neoplasm. This is the first report to describe the CBCT imaging features of a long-standing graft in the anterior mandible. Implants or grafts may be incidental findings on radiographic images made for unrelated purposes. Although most are well-defined and radiographically homogeneous, being of relatively inert non-biological material, immune reactions to some grafts may stimulate alterations in the appearance of surrounding tissues. Biological implants may undergo growth and differentiation, causing their appearance to mimic neoplastic lesions. We present the case of a cosmetic autogenous CCG that posed a diagnostic challenge both radiographically and histopathologically.

Two-step Holographic Imaging Method based on Single-pixel Compressive Imaging

  • Li, Jun;Li, Yaqing;Wang, Yuping;Li, Ke;Li, Rong;Li, Jiaosheng;Pan, Yangyang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.146-150
    • /
    • 2014
  • We propose an experimental holographic imaging scheme combining compressive sensing (CS) theory with digital holography in phase-shifting conditions. We use the Mach-Zehnder interferometer for hologram formation, and apply the compressive sensing (CS) approach to the holography acquisition process. Through projecting the hologram pattern into a digital micro-mirror device (DMD), finally we will acquire the compressive sensing measurements using a photodiode. After receiving the data of two holograms via conventional communication channel, we reconstruct the original object using certain signal recovery algorithms of CS theory and hologram reconstruction techniques, which demonstrated the feasibility of the proposed method.

Three-dimensional cone-beam computed tomographic sialography in the diagnosis and management of primary Sjögren syndrome: Report of 3 cases

  • Thomas, Nithin;Kaur, Aninditya;Reddy, Sujatha S.;Nagaraju, Rakesh;Nagi, Ravleen;Shankar, Vidya Gurram
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.209-216
    • /
    • 2021
  • Sjögren syndrome is a chronic autoimmune inflammatory disease characterized by lymphocytic infiltration of exocrine glands, predominantly the parotid and lacrimal glands, thereby resulting in oral and ocular dryness. It has been reported to occur most frequently in women between 40 and 50 years of age. Sjögren syndrome has an insidious onset, is slowly progressive, and presents a wide range of clinical manifestations, leading to delays or challenges in the diagnosis. Early diagnosis of this condition is essential to prevent the associated complications that affect patients' quality of life. This report presents 3 cases of Sjögren syndrome in female patients aged between 40 and 75 years who presented with complaints of persistent dry mouth and burning sensation. The cases highlight the diagnostic value of 3-dimensional cone-beam computed tomographic sialography in the detection of salivary gland pathologies at an early stage.

Development of a LDI System for the Maskless Exposure Process and Energy Intensity Analysis of Single Laser Beam (Maskless 노광공정을 위한 LDI(Laser Direct Imaging) 시스템 개발 및 단일 레이저 빔 에너지 분포 분석)

  • Lee, Soo-Jin;Kim, Jong-Su;Shin, Bong-Cheol;Kim, Dong-Woo;Cho, Meyong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.834-840
    • /
    • 2010
  • Photo lithography process is very important technology to fabricate highly integrated micro patterns with high precision for semiconductor and display industries. Up to now, mask type lithography process has been generally used for this purpose; however, it is not efficient for small quantity and/or frequently changing products. Therefore, in order to obtain higher productivity and lower manufacturing cost, the mask type lithography process should be replaced. In this study, a maskless lithography system using the DMD(Digital Micromirror Device) is developed, and the exposure condition and optical properties are analyzed and simulated for a single beam case. From the proposed experimental conditions, required exposure experiments were preformed, and the results were investigated. As a results, 10${\mu}m$ spots can be generated at optimal focal length.

Association Between Vertebrobasilar Insufficiency and Cervicogenic Headache: Hypothetical Approach Towards Etiopathogenesis of Headache

  • Kaur, Aninditya;Rakesh, N.;Reddy, Sujatha S.;Thomas, Nithin;Nagi, Ravleen;Patil, Deepa Jatti
    • Journal of Oral Medicine and Pain
    • /
    • v.45 no.4
    • /
    • pp.97-109
    • /
    • 2020
  • Purpose: Cervicogenic headache (CGH) is pain referred to the head/ face from the structures in vicinity of upper cervical spinal nerves via trigeminocervical pathway. Ponticulus Posticus (PP) and Elongated Styloid Process (ESP) are anatomical structures that cause compression of vasculature present around upper cervical nerve plexus. Recently, computational fluid dynamics (CFD) has shown to play an essential role in identification of these high-pressure zones in the brain. The aim of this research is to study the association of ESP and PP in patients with CGH and to develop a hypothesis by CFD to analyse vertebrobasilar insufficiency as a contributing factor in occurrence of CGH. Methods: Retrospective analysis of 4500 full skull CBCT scans was done for the presence of partial or complete PP and length of Styloid Process (SP). Research was divided into two phases; In first Preliminary Phase, 150 scans that showed the presence of PP and ESP were analysed, and only 134 patients gave consent to fill the questionnaire containing 96 question items pertaining to symptoms associated with CGH. In the second phase, simulation of Vertebral and Carotid Artery was done using Fluent 14.5 Software and by CFD, pressure distribution on arteries was obtained that helped to identify high pressure regions. Results: Both PP and ESP showed a statistically significant association with CGH (p<0.001). By CFD analysis, both steady and transient phases of simulation showed drop in pressure due to constriction of internal carotid and vertebral artery by ESP and PP respectively and were found to decrease the volume of blood reaching the brain, 0.12 /0.13 mL and 0.06 mL respectively. Conclusions: Our analysis proves ESP and PP as contributing factors towards CGH. Hence for proper diagnosis and management of headache disorders, clinicians should have adequate knowledge about these anatomical structures and their resulting clinical symptoms.