• Title/Summary/Keyword: DLC films deposition

Search Result 135, Processing Time 0.021 seconds

Characterization of tribologic DLC thin films fabricated by pulsed laser deposition (펄스 레이저 증착법에 의한 DLC 박막의 내마모성 특성변화)

  • Shim, Kyung-Suk;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.851-853
    • /
    • 1999
  • DLC thin films have been fabricated by pulsed laser deposition with various deposition parameters. The characterization of fabricated thin films was performed depending on the deposition parameters. As the kinetic energies provided by deposition temperature and the laser energy density were increased, the film showed graphite properties. Structural properties of the films were investigated by Raman spectroscopy. The growth energy should be optimized to fabricate high quality DLC thin films. DLC films showed high hardness and their friction coefficient was measured to be about 0.2 regardless of the load of the ball pin.

  • PDF

Study on the fabrication of DLC thin films by pulsed laser deposition (펄스 레이저 증착법에 의한 DLC 박막 제작 연구)

  • Jeong, young-Sik;Eun, Dong-Seog;Lee, Sang-Yeol;Jung, Hae-Suk;Park, Hung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.285-287
    • /
    • 1997
  • We have deposited hydrogen-free diamond-like carbon (DLC) films by pulsed laser deposition of graphite. Pulsed laser deposition (PLD) can be utilized to generate films with desired properties quite different from those of the starting material. Since DLC films grown by PLD using turbo pump are perpared without hydrogen, they have a higher density and a higher index of refraction than the hydrogenated DLC films. In this study, effects of the substrate temperature and laser energy density on the properties of DLC films were systematically investigated. The structure and properties of the films have been studied by scanning electron microscopy (SEM), Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), and Raman spectroscopy.

  • PDF

Tribolgical Characteristics of DLC Film using Substrates with Varying Hardness

  • Park, Jae-Hong;Jang, Beom-Taek;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.31-35
    • /
    • 2008
  • DLC (Diamond Like Carbon) films have predominant tribological properties like a high hardness, low friction and high chemical resistance; therefore, DLC films are applied in a wide range of industrial fields. This paper evaluated the characteristics of DLC films deposited on bearing steel with different hardness by RF-PECVD (Radio Frequency - Plasma Enhanced Chemical Vapor Deposition) method. Si-interlayer was deposited on bearing steel to improve adhesion strength by RF-Sputtering method. The DLC film structures were analyzed with Raman spectra and Gaussian function. Adhesion strength of DLC films was measured with a scratch tester. Friction and wear test were carried out with a ball-on -disc type to investigate the tribological characteristics. Experimental results showed that DLC films deposited on bearing steel under same deposition condition have typical structure DLC films regardless of hardness of bearing steel. Adhesion strength of DLC film is increased with a hardness of bearing steel. Friction coefficient of DLC film showed lower at the high hardness of bearing steel.

Characterization of Tribological Properties of DLC Films Prepared by Different Deposition Method (증착방법에 따른 DLC 막의 마찰-마모 특성평가)

  • Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.497-504
    • /
    • 2009
  • DLC is considered as the candidate material for application of moving parts in automotive components relatively in high pressure and temperature operating conditions for its high hardness with self lubrication and chemical inertness. Different deposition method such as arc plating, ion gun plating and PECVD were used for comparing mechanical and tribological properties of each DLCs deposited on stainless steel with 1 um thick respectively. Among these 3 types of DLCs, the arc plated DLC film showed highest value for wear resistance in dry condition. From the results of analysis for physical properties of DLC films, it seems that the adhesion force and crack initiation modes were more important factors than intrinsic mechanical properties such as hardness, elastic modulus and/or roughness to the wear resistance of DLC films. Raman spectroscopy was used for understanding chemical bonding natures of each type of DLC films. Typical D and G peaks were identified based on the deposition method. Hardness of the coating layers were identified by nanoindentation method and the adhesions were checked by scratch method.

Electrical Properties of Diamond-like Carbon Thin Film synthesized by PECVD (PECVD로 합성한 다이아몬드상 카본박막의 전기적 특성)

  • Choi, Won-Seok;Park, Mun-Gi;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.973-976
    • /
    • 2008
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas. We examined the effects of the RF power on the electrical properties of the DLC films. The films were deposited at several RF powers ranging from 50 to 175 W in steps of 25 W. The leakage current of DLC films increased at higher deposition RF power. And the resistivities of DLC films grown at 50 W and 175 W were $5\times10^{11}$ ${\Omega}cm$ and $2.68\times10^{10}$ ${\Omega}cm$, respectively.

A study on the deposition of DLC thin films by using an FCVA technique (FCVA 방법에 의한 DLC 박막의 제작에 관한 연구)

  • Lee, Hae-Seung;Uhm, Hyun-Seok;Kim, Jong-Kuk;Choi, Byoung-Ryong;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1379-1382
    • /
    • 1997
  • Diamond-like carbon(DLC) thin films are produced by using a filtered cathodic vacuum arc(FCVA) deposition system. Different magnetic components, namely steering, focusing, and filtering plasma-optic systems, are used to achieve a stable arc plasma and to prevent the macroparticles from incorporating into the deposited films. Effects of magnetic fields on plasma behavior and film deposition are examined. The carbon ion energy is found to be varied by applying a negative (accelerating) substrate bias voltage. The deposition rate of DLC films is dependent upon magnetic field as well as substrate bias voltage and at a nominal deposition condition is about $2{\AA}/s$. The structural properties of DLC films, such as internal stress, relative fraction of tetrahedral($sp^3$) bonds, and surface roughness have also been characterized as a function of substrate bias voltages and partial gas($N_2$) pressures.

  • PDF

Optical properties of diamond-like carbon films deposited by ECR-PECVD method (ECR-PECVD 방법으로 증착한 Diamond-Like carbon 박막의 광 특성)

  • Kim, Dae-Nyoun;Kim, Ki-Hong;Kim, Hye-Dong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.291-299
    • /
    • 2004
  • DLC films were deposited using the ECR-PECVD method with the fixed deposition condition, such as ECR power, methane and hydrogen gas-flow rates and deposition time, for various substrate bias voltage. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristic of the films were analyzed using the FTIR, Raman, and UV/Vis spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio(ID/IG) of the D and G peak was increased as the substrate bias voltage increased and films hardness was increased. Optical transmittances of DLC film were decreased with increasing deposition time and substrate bias voltage. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Characterization of Plate Wear and Printing Quality of Concave Polymer Printing Plate Prepared by Diamond-Like Carbon Deposition Conditions (DLC(Diamond-Like Carbon) 코팅에 의한 오목 폴리머인쇄판의 내구성 및 인쇄 품질 특성)

  • Yoo, Han-Sol;Kim, Jun-Hyung;Moon, Kyoung-Il;Hwang, Taek-Sung;Lee, Hyok-Won
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.552-561
    • /
    • 2012
  • Diamond-like carbon (DLC) films have been widely used in many industrial applications because of their outstanding mechanical and chemical properties like hardness, wear resistance, lubricous property, chemical stability, and uniformity of deposition. Also, DLC films coated on paper, polymer, and metal substrates have been extensively used. In this work, in order to improve the printing quality and plate wear of polymer printing plates, different deposition conditions were used for depositing DLC on the polymer printing plates using the Pulsed DC PECVD method. The deposition temperature of the DLC films was under $100^{\circ}C$, in order to prevent the deformation of the polymer plates. The properties of each DLC coating on the polymer concave printing plate were analyzed by measuring properties such as the roughness, surface morphology, chemical bonding, hardness, plate wear resistance, contact angle, and printing quality of DLC films. From the results of the analysis of the properties of each of the different DLC deposition conditions, the deposition conditions of DLC + F and DLC + Si + F were found to have been successful at improving the printing quality and plate wear of polymer printing plates because the properties were improved compared to those of polymer concave printing plates.

Characterizations of Diamond-Like Carbon Films Prepared by the Plasma Enhanced Chemical Vapor Deposition Method (플라즈마 화학 기상 증착법으로 제작된 Diamond-Like Carbon 박막의 특성)

  • 김종탁
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.465-471
    • /
    • 1998
  • Diamond-like carbon (DLC) films have been prepared by means of the plasma enhanced chemical vapor deposition (PECVD) method using vertical-capacitor electrodes. The deposition rata in our experiment is relatively small compared with that in the conventional PECVD methods, which implies that the accumulation of the neutral $CH_n$ radicals on the substrates due to the gravitational movement may not contribute to the deposition of DLC films. The hardness and the transparency were measured as a function of the ratio of the partial pressure of $CH_4-H_2$ mixtures or the hydrogen contents of specimens. The coefficients of friction between DLC films and a $Si_3N_4$ tip measured by using a lateral force microscope are in the range of 0.024 to 0.033 which depend on the hydrogen contents in DLC, and the surface roughness depends mainly on the deposition rate. The optical gaps increase with increasing the hydrogen contents. DCL films deposited on Pt-coated Si wafers show the stable emission characteristics, and the turn-on fields are in the range of 11 to 20 $V/\mu$m.

  • PDF

The Mechanical and Optical Properties of Diamond-like Carbon Films on Buffer-Layered Zinc Sulfide Substrates

  • Song, Young-Silk;Song, Jerng-Sik;Park, Yoon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 1998
  • Diamond-like carbon(DLC) films were deposited on buffer-layered ZnS substrates by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) method. Ge and GeC buffer layera were used between DLC and ZnS substrates to promote the adhesion of DLC on ZnS substrates. Ge buffer layers were sputter deposited by RF magnetron sputtering and $GeC^1$ buffer layers were deposited by same method except using acetylene reactive gas. The relatinship between film properties and deposition conditions was investigated using gas pressure, RF power and dc bias voltage as PECVD parameters. The hardness of DLC films were measured by micro Vickers hardness test and the adhesion of DLC films on buffer-layered ZnS substrates were studied by Sebastian V stud pull tester. The optical properties of DLC films on butter-layered ZnS substrates were characterized by ellipsometer and FTIR spectroscopy.

  • PDF