• Title/Summary/Keyword: DLC (Diamond-like Carbon)

Search Result 318, Processing Time 0.037 seconds

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Investigation of Physicochemical Properties of Mo Carbide Utilizing Electron Spectroscopy

  • Jeong, Eunkang;Park, Juyun;Kang, Yong-Cheol
    • Journal of Integrative Natural Science
    • /
    • v.13 no.3
    • /
    • pp.87-91
    • /
    • 2020
  • Molybdenum carbide (MoCx) thin films (TFs) were deposited by reactive radio frequency (rf) magnetron co-sputtering in high vacuum chamber. We compared the properties of MoCx thin films as the rf power changed on C target. The result of alpha step measurement showed that the thickness of the MoCx TFs varied from163.3 to 194.86 nm as C power was increased from 160 to 200 W. The crystallinity of MoCx such as b-Mo2C, Mo2C, and diamond like carbon (DLC) structures were observed by XRD. The oxidation states of Mo and C were determined using high resolution XPS spectra of Mo 3d and C 1s were deconvoluted. Molybdenum was consisted of Mo, Mo4+, and Mo6+ species. And C was deconvoluted to C-Mo, C, C-O, and C=O species.

A New Method for Measuring Residual Stress in Micro and Nano Films (마이크로 및 나노 박막의 잔류응력을 측정하기위한 새로운 방법)

  • Kang, Ki-Ju;Evans, Anthony G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.438-444
    • /
    • 2003
  • A new method to measure residual stress in micron and nano scale films is described. In the theory it is based on Linear Elastic Fracture Mechanics. And in the techniques it depends on the combined capability of the focused ion beam (FIB) imaging system and of high-resolution digital image correlation (DIC) software. The method can be used for any film material (whether amorphous or crystalline) without thinning the substrate. In the method, a region of the film surface is highlighted and scanning electron images of that region taken before and after a long slot, depth a, is introduced using the FIB. The DIC software evaluates the displacement of the surface normal to the slot due to the stress relaxation by using features on the film surface. To minimize the influence of signal noise and rigid body movement, not a few, but all of the measure displacements are used for determining the real residual stress. The accuracy of the method has been assessed by performing measurements on a nano film of diamond like carbon (DLC) on glass substrate and on micro film of aluminum oxide thermally grown on Fecrally substrate. It is shown that the new method determines the residual stress ${\sigma}_R=-1.73$ GPa for DLC and ${\sigma}_R=-5.45$ GPa for the aluminum oxide, which agree quite well with ones measured independently.

  • PDF

Terabit-per-square-inch Phase-change Recording on Ge-Sb-Te Media with Protective Overcoatings

  • Shin Jin-Koog;Lee Churl Seung;Suh Moon-Suk;Lee Kyoung-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.185-189
    • /
    • 2005
  • We reported here nano-scale electrical phase-change recording in amorphous $Ge_2Sb_2Te_5$ media using an atomic force microscope (AFM) having conducting probes. In recording process, a pulse voltage is applied to the conductive probe that touches the media surface to change locally the electrical resistivity of a film. However, in contact operation, tip/media wear and contamination could major obstacles, which degraded SNR, reproducibility, and lifetime. In order to overcome tip/media wear and contamination in contact mode operation, we adopted the W incorporated diamond-like carbon (W-DLC) films as a protective layer. Optimized mutilayer media were prepared by a hybrid deposition system of PECVD and RF magnetron sputtering. When suitable electrical pulses were applied to media through the conducting probe, it was observed that data bits as small as 25 nm in diameter have been written and read with good reproducibility, which corresponds to a data density of $1 Tbit/inch^2$. We concluded that stable electrical phase-change recording was possible mainly due to W-DLC layer, which played a role not only capping layer but also resistive layer.

  • PDF

Effects of Oxygen and Nitrogen Addition on the Optical Properties of Diamond-Like Carbon Films (산소와 질소의 첨가에 따른 DLC막의 광학적 특성의 변화)

  • Hwang, Min-Sun;Lee, Chong-Mu;Moon, Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1047-1051
    • /
    • 1997
  • CH$_{4}$와 H$_{2}$의 혼합가스에 미량의 질소와 산소를 첨가하여 rf-플라즈마 CVD법으로 DLC막을 합성하였다. 이 때 챔버내 압력은 430mtorr, 기판에 인가된 전력은 80W였으며, H$_{2}$와 CH$_{4}$의 비율은 1:1이었다. 이 시편들에 대해 가시광선 영역과 자외선 영역에서의 투과도를 비교하였으며, 결합구조의 변화를 알아보기 위하여 FTIR 분석을 실시하였다. 질소의 경우 첨가량이 6.3%에서 17.4%으로 증가됨에 따라 전체적인 투과도값이 증가하였으며, FRIR 분석결과 wavenumber 3500 $cm^{-1}$ /의 위치에 N-H stretching band가 나타나고 2300$cm^{-1}$ /에는 nitrile의 피크가 나타났다. 이 피크들의 존재는 질소의 첨가에 의하여 interlink를 감소시킴으로써 막의 잔류응력을 현저히 감소시킬 수 있음을 의미한다. 2% $O_{2}$를 첨가한 경우 막의 투과도는 질소를 첨가한 경우보다 월등히 더 향상되었다. 질소첨가량을 증가시킴에 따라 optical band gap또한 증가되는 경향을 보였으며, 2% $O_{2}$를 첨가하였을 때 막의 optical band gap은 0.5까지 감소하였다.

  • PDF

고분자 소재의 표면보호를 위한 DLC 코팅 기술

  • Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.265-265
    • /
    • 2010
  • 고분자 소재(polycarbonate; PC)의 표면을 보호하고 광학적 특성을 유지하기 위해 산화물 다층 박막과 비정질 탄소 박막(diamond-like carbon; DLC)을 전자빔 증착(e-beam evaporation)과 이온빔 증착(ion-beam deposition)을 이용하여 고분자 소재에 코팅하였다. 전자빔 증착으로 코팅된 실리콘과 티타늄 산화물 다층 박막은 소재 표면에서 가시광선의 반사율을 낮추는 효과를 가지고 있어 다양한 광학 코팅분야에서 이용되고 있다. 비정질 탄소 박막은 경도가 높고 마찰계수가 낮기 때문에 기계부품의 수명향상을 향상하기 위해 주로 사용되며, 본 연구에서는 고분자 소재의 최상층에 코팅하여 보호막으로 이용하였다. 고분자 윈도우에 산화물 다층 박막을 코팅하면 코팅되지 않은 기판과 비교하여 투과율이 향상되었으며 보호막으로 코팅된 비정질 탄소 박막에 의해서 일어나는 투과율 저하를 부분적으로 상쇄하는 효과를 보였다. 산화물 다층 박막의 수는 광학 분야에서는 주로 5-7층을 이용하지만 고분자 소재는 코팅 공정이 길어지면 열 변형이 일어날 수 있기 때문에 산화막의 층수를 낮추는데 초점이 맞춰졌다. 5층과 3층으로 코팅된 산화물 박막 모두 투과율이 향상되었으며 3층에 비해서 5층의 투과율 향상효과가 큰 것으로 나타났다. 고분자 소재의 투과율은 평균 약 90%이었으며 산화물 다층 박막과 비정질 탄소 박막을 코팅한 후 투과율이 약 81%로 측정되었다. 비정질 탄소 박막과 산화물 다층 박막을 적절하게 설계하고 코팅한다면 고분자 소재의 보호막으로 이용될 수 있을 것으로 판단된다.

  • PDF

Analysis of Surface Forces in Micro Contacts between Rough Surfaces (거친 표면간의 미세 접촉에서의 표면력 해석)

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

Effect of $Cl_2$ Gas Concentration of the Surface Modified TiC on the Tribological Properties (TiC표면개질에서 $Cl_2$ 가스농도가 tribology 특성에 미치는 효과)

  • Bae, Heung-Taek;Lim, Dae-Soon;Na, Byung-Chul
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.261-265
    • /
    • 2007
  • Carbide-derived carbon coating has been synthesized by low temperature treatment of TiC disk with $H_2/Cl_2$ mixture gases. A variety of physical measurements indicated that Ti was extracted and carbon layer was formed by exposure of $Cl_2$ gas. The $I_D/I_G$ ratio increased with increasing $Cl_2$ gas concentration. Wear coefficient and frictional coefficient varied with $Cl_2$ gas concentration. When the $Cl_2$ gas concentration decreased to 3.3 vol%, the friction coefficient approach a minimum. The results showed that degree of graphite crystallinity and variation of porosity due to the $Cl_2$ gas content were responsible for different tribology performance.

Nano/Micro Friction with the Contact Area (접촉 면적에 따른 나노/마이크로 마찰 특성)

  • Yoon Eui-Sung;Singh R. Arvind;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • Nano/micro friction with the contact area was studied on Si-wafer (100) and diamond-like carbon (DLC) film. Borosilicate balls of radii $0.32{\mu}m,\;0.5{\mu}m,\;1.25{\mu}m\;and\;2.5{\mu}m$ mounted on the top of AFM tip (NPS) were used for nano-scale contact and Soda Lime glass balls of radii 0.25mm, 0.5mm, 1mm were used for micro-scale contact. At nano-scale, the friction between ball and surface was measured with the applied normal load using an atomic force microscope (AFM), and at micro scale it was measured using ball-on flat type micro-tribotester. All the experiments were conducted at controlled conditions of temperature $(24\pm1^{\circ}C)$ and humidity $(45\pm5\%)$. Friction was measured as a function of applied normal load in the range of 0-160nN at nano scale and in the range of $1000{\mu}N,\; 1500{\mu}N,\;3000{\mu}N\;and\;4800{\mu}N$ at micro scale. Results showed that the friction at nano scale increased with the applied normal load and ball size for both kinds of samples. Similar behavior of friction with the applied normal load and ball size was observed for Si-wafer at micro scale. However, for DLC friction decreased with the ball size. This difference of in behavior of friction in DLC nano- and microscale was attribute to the difference in the operating mechanisms. The evidence of the operating mechanisms at micro-scale were observed using scanning electron microscope (SEM). At micro-scale, solid-solid adhesion was dominant in Silicon-wafer, while plowing in DLC. Contrary to the nano scale that shows almost a wear-less situation, wear was prominent at micro-scale. At nano- and micro-scale, effect of contact area on the friction was discussed with the different applied normal load and ball size.

Controlled Formation of Surface Wrinkles and Folds on Poly (dimethylsiloxane) Substrates Using Plasma Modification Techniques

  • Nagashima, So;Hasebe, Terumitsu;Hotta, Atsushi;Suzuki, Tetsuya;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.223-223
    • /
    • 2012
  • Surface engineering plays a significant role in fabricating highly functionalized materials applicable to industrial and biomedical fields. Surface wrinkles and folds formed by ion beam or plasma treatment are buckling-induced patterns and controlled formation of those patterns has recently gained considerable attention as a way of creating well-defined surface topographies for a wide range of applications. Surface wrinkles and folds can be observed when a stiff thin layer attached to a compliant substrate undergoes compression and plasma treatment is one of the techniques that can form stiff thin layers on compliant polymeric substrates, such as poly (dimethylsiloxane) (PDMS). Here, we report two effective methods using plasma modification techniques for controlling the formation of surface wrinkles and folds on flat or patterned PDMS substrates. First, we show a method of creating wrinkled diamond-like carbon (DLC) film on grooved PDMS substrates. Grooved PDMS substrates fabricated by a molding method using a grooved master prepared by photolithography and a dry etching process were treated with argon plasma and subsequently coated with DLC film, which resulted in the formation of wrinkled DLC film aligning perpendicular to the steps of the pre-patterned ridges. The wavelength and the amplitude of the wrinkled DLC film exhibited variation in the submicron- to micron-scale range according to the duration of argon plasma pre-treatment. Second, we present a method for controlled formation of folds on flat PDMS substrates treated with oxygen plasma under large compressive strains. Flat PDMS substrates were strained uniaxially and then treated with oxygen plasma, resulting in the formation of surface wrinkles at smaller strain levels, which evolved into surface folds at larger strain levels. Our results demonstrate that we can control the formation and evolution of surface folds simply by controlling the pre-strain applied to the substrates and/or the duration of oxygen plasma treatment.

  • PDF